tìm x,y,z biết x+y-z=y+z-x=z+x-y=xyz
,tìm x,y,z biết:
1) x+y-z=y+z-x=x+z-y=xyz
cho x,y,z thuộc Q tìm x,y,z biết xyz>x+y+z
tìm GTNN xyz /[x+y]nhân[y+z]nhân[x+z] biết x,y,z>=0
Cái đề thế này ah
\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Vì \(\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}\)
\(\Rightarrow\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge0\)
-_- Làm như thế để chết nhắm :v
Dấu = xảy ra x=y=z=0 => Hỏng .
@Aliba...
\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
áp dụng BĐT cô-si ta có :
\(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(z+x\ge2\sqrt{zx}\)
nhân vế với vế ta có
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\sqrt{x^2y^2z^2}\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)
\(\Leftrightarrow\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{xyz}{8xyz}=\frac{1}{8}\)
vậy GTNN là \(\frac{1}{8}\) khi và chỉ khi \(x=y=z=1\)
:)
Tìm x+y+z (x,y,z thuộc N* biết: x+y+z=xyz
cho x , y ,z là các số nguyên dương tìm x,y,z biết x+y+z=xyz
Xét \(x\le y\le z\) vì x,y,z nguyên dương
\(\Rightarrow xyz\ne0\)và \(x\le y\le z\Rightarrow xyz=x+y+z\le3z\)
\(\Rightarrow xy\le3\Rightarrow xy\in\left\{1;2;3\right\}\)
- Nếu \(xy=1\Rightarrow x=y=1\)ta có: \(2+z=z\)( không thỏa mãn )
- Nếu \(xy=2\Rightarrow x=1;y=2\Rightarrow z=3\)( thỏa mãn ) ( vì \(x\le y\))
- Nếu \(xy=3\Rightarrow x=1;y=3\Rightarrow z=2\)( thỏa mãn ) ( vì \(x\le y\))
Vậy......................................
\(\text{Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. }\)
Vì \(x,y,z\)nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3
=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
Ta có: \(x+y+z=xyz\)
\(\Leftrightarrow\left(x\cdot100\right)+\left(y\cdot10\right)+\left(z\cdot1\right)=xyz\)
\(\Rightarrow z=0,1,2,3,4,5,6,7,8,9\)
\(\Rightarrow y=0,1,2,3,4,5,6,7,8,9\)
\(\Rightarrow x=1,2,3,4,5,6,7,8,9\)
Tìm x,y,z thuộc Z biết:
xyz=x+2015
xyz=y+2017
xyz=z+2019
Ngồi tick kiếm "tiền"
Ngồi làm mất thời gian
AI thấy đúng thì tick nhé!!!
tìm x,y,z thuộc Z biết
xyz=y+2015
xyz=x+2017
xyz=z+2019
Tìm GTNN của A=(x+y)(x+z). Biết x,y,z >0 và xyz(x+y+z)=1
Tìm x,y,z thỏa mãn : x+y-z=y+z-x=x+z-y=xyz