GẤP SOS: Tìm các số nguyên tố p,q,r thỏa mãn: p2 + 1 q2 + 3 = r2 + 21.
Tìm 3 số nguyên tố lien tiep p , q , r sao cho
p2 + q2 + r2 đều là nguyên tố
p^2+q^2+r^2=3^2+5^2+7^2=83
k cho mình nha!
a,tìm các số nguyên tố p1,p2,p3,p4,p5 thỏa mãn: p2-p1=p3-p2=p4-p3=p5-p4=6
b, tìm các số nguyên tố a,b,c biết: abc<ab+bc+ca
mọi người giúp mk nha mk cần gấp lắm
tìm các số nguyên tố p thỏa mãn 2p + p2 là số nguyên tố
Xét p=2
⇒ \(2^2+2^2=4+4=8\left(L\right)\)
Xét p=3
⇒ \(2^3+3^2=8+9=17\left(TM\right)\)
Xét p>3
⇒ p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẻ và p không chia hết cho 3 nên (p2–1)⋮3 và (2p+1)⋮3.
Do đó: 2p+p2là hợp số (L)
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
Tìm tất cả các số nguyên tố p, q, r thỏa mãn:
(p + 1)(q + 2)(r + 3) = 4pqr
Tìm các số nguyên tố p, q, r thỏa mãn: 1/p + 1/(q+1) = 1/r
Cho p,q là các số nguyên tố lớn hơn 3 thỏa mãn p-q=2 chứng minh rằng p+q chia hết cho 12
SOS cứu
Để olm giúp em, em nhé!
Vì q là số nguyên tố lớn hơn 3 nên q có dạng:
q = 3n + 1 (n là số tự nhiên chẵn vì nếu n lẻ thì q là hợp số loại)
hoặc q = 3n + 2 (n là số tự nhiên lẻ vì nếu n chẵn thì q là hợp số loại)
Xét q = 3n + 1 ta có: p = 3n + 1 + 2 = 3n + 3 ⋮ 3 (loại)
Vậy q có dạng: q = 3n + 2 ⇒ p = 3n + 2 + 2 = 3n + 4
Theo bài ra ta có:
p + q = 3n + 2 + 3n + 4
p + q= 6n + 6 (n là số tự nhiên lẻ)
p + q = 6.(n+1)
Vì n là số lẻ nên n + 1⋮ 2; 6 ⋮ 6 ⇒ p + q ⋮ 12 (đpcm)
1.tìm 3 số nguyên tố p,q,r sao cho \(p^q+q^p=r\)
2.tìm các số nguyên tố x,y,z thỏa mãn \(x^y+1=z\)
Giả sử có 3 số nguyên là p;q;r sao cho \(p^q+q^p=r\)
Khi đó r > 3 nên r là số lẻ
=> p.q không cùng tính chẵn lẻ
Giả sử p=2 là q là số lẻ khi đó \(2^q+q^2=r\)
Nếu q không chia hết cho 3 thì q^2 =1 (mod3)
Mặt khác vì q lẻ nên \(2^q\)= -1(mod3)
Từ đó suy ra: \(2^q+q^2⋮3\Rightarrow r⋮3\)(vô lí)
Vậy q=3 lúc đó \(r=2^3+3^2=17\)là số nguyên tố
Vậy p=2; q=3, r=17 hoặc p=3; q=2, r=17
Cho 3 số nguyên tố p,q,r thỏa mãn p^2+q^2+r^2= 150. Tìm các số đó
Tìm các số nguyên tố p,q thoả mãn p2 - 6q2 =1
p2 = 1 + 6q2
⇒ p là số lẻ
Đặt p = 2k + 1
⇒ p2 = 4k2 + 4k + 1
⇒ 4k2 + 4k = 6q2
⇒ 2k2 + 2k = 3q2
⇒ 3q2 là số chẵn mà 3 là số lẻ
⇒ q2 là chẵn => q là chẵn => q là 2
⇒ p = \(\sqrt{1+6\cdot2^2}\) = 5
\(\text{Tìm 5 số nguyên tố p1,p2,p3,p4,p5 thỏa mãn p2-p1=p3-p2=p4-p3=p5-p4=6}\)
p1 = 5
p2 = 11
p3 = 17
p4 = 23
p5 = 29
p1 = 5
p2 = 11
p3 = 17
p4 = 23
p5 =29
p1 = 5
p2 = 11
p3 = 17
p4 = 23
p5 =29