Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
_Vũ_Bích_Diệp
Xem chi tiết
Number one princess in t...
6 tháng 4 2017 lúc 15:40

Giải

Đặt \(\left(2n+1,10n+7\right)=d\)

\(\Rightarrow2n+1⋮d\Rightarrow5\left(2n+1\right)⋮d\Rightarrow10n+5⋮d\)

\(\Rightarrow\left[\left(10n+7\right)-\left(10n+5\right)\right]⋮d\)

\(\Rightarrow\left[10n+7-10n-5\right]⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left[1;2\right]\)

Do 2n + 1 là số lẻ

\(\Rightarrow d=1\)

Vậy \(\left(2n+1,10n+7\right)=1\)

hay 2n + 1 và 10n + 7 là 2 số nguyên tố cùng nhau

Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Đỗ Nguyễn Lê Anh
Xem chi tiết
ngô thu giang
Xem chi tiết
Nguyễn Phương Thảo
16 tháng 10 2015 lúc 11:02

Nói đúng rồi Mai Nguyễn Bảo Phương

Dương Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 1 2023 lúc 0:10

Gọi d=ƯCLN(2n+1;2n^2-1)

=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d

=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d

=>n+1 chia hết cho d và 2n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau

Bui Dinh Quang
Xem chi tiết
Trương Minh Tiến
25 tháng 11 2017 lúc 20:09

Gọi ƯCLN(2n+1;3n+1)=a (a thuộc N*)

=> 2n+1 chia hết cho a; 3n+1 chia hết cho a

=> 3(2n+1) chia hết cho a; 2(3n+1) chia hết cho a

=> 6n+3 chia hết cho a; 6n+2 chia hết cho a

=> (6n+3)-(6n+2) chia hết cho a

=> (6n-6n)+(3-2) chia hết cho a

=> 1 chia hết cho a

=> a=1 

=> UWCLN(2n+1;3n+1)=1

=> 2n+1 và 3n+1 nguyên tố cùng nhau

Vậy với mọi n thì 2n+1 và 3n+1 nguyên tố cùng nhau

Sky Hoàng Nguyễn Fuck
12 tháng 12 2017 lúc 21:36

Gọi ƯCLN(2n+1;3n+1)=a (a thuộc N*)
=> 2n+1 chia hết cho a; 3n+1 chia hết cho a
=> 3(2n+1) chia hết cho a; 2(3n+1) chia hết cho a
=> 6n+3 chia hết cho a; 6n+2 chia hết cho a
=> (6n+3)-(6n+2) chia hết cho a
=> (6n-6n)+(3-2) chia hết cho a
=> 1 chia hết cho a
=> a=1
=> UWCLN(2n+1;3n+1)=1
=> 2n+1 và 3n+1 nguyên tố cùng nhau
Vậy với mọi n thì 2n+1 và 3n+1 nguyên tố cùng nhau

chúc bn hok tốt @_@

Phạm Minh Tuấn
Xem chi tiết
Le Thi Khanh Huyen
25 tháng 1 2015 lúc 10:11

Gọi ƯCLN 2 số trên là a

2n+1 chia hết cho a=> 3(2N+1)chia hết cho a=> 6n+3 chia hết cho a(1)

 3n+1chia hết cho a=>2(3N+1)chia hết cho a=>6N+2 chia hết cho a(2)

tỪ (1) VÀ (2), TA CÓ (6n+3)-(6n+2) chia hết cho a

=> 1 chia hết cho a

=>a=1

vậy n+1 va 3n+1(n la so tu nhien) la hai so nguyen to cung nhau

 

đỗ việt hùng
Xem chi tiết
Feliks Zemdegs
20 tháng 10 2015 lúc 18:58

1.1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1} = 225 
<=> (2n.2n):4 = 225 
<=> n2=225 
=> n = 15 và n = -15 
Vì n thuộc N* nên n = 15 thỏa mãn

Anh Lê
20 tháng 10 2015 lúc 18:59

Giải: 
1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1}/2 = 225 
<=> (2n.2n):4 = 225 
<=> n^2=225 
suy ra n = 15 và n = -15 
do n thuộc N* nên n = 15 thỏa mãn

gọi d > 0 là ước số chung của 7n+10 và 5n+7 
=> d là ước số của 5.(7n+10) = 35n +50 
và d là ước số của 7(5n+7)= 35n +49 
mà (35n + 50) -(35n +49) =1 
=> d là ước số của 1 => d = 1 
vậy 7n+10 và 5n+7 nguyên tố cùng nhau. 

tích nha

Feliks Zemdegs
20 tháng 10 2015 lúc 19:00

2.1) 
2.Gọi d(d > 0) là ước số chung của 7n+10 và 5n+7 
=> d là ước số của 5.(7n+10) = 35n +50 
Và d là ước số của 7(5n+7)= 35n +49 
Mà (35n + 50) -(35n +49) =1 
=> d là ước số của 1

Mà Ư(1)=1

=> d = 1 
Vậy 7n+10 và 5n+7 nguyên tố cùng nhau. 

 

Linh Ngoc Nguyen
Xem chi tiết
Pikachu
12 tháng 11 2017 lúc 7:22

Gọi a là ước của n+1 và 2n+3

2n+3 - n+1 chia hết cho a

= 2n+3 - 2(n+1) chia hết cho a

= 2n+3 - 2n+2 chia hết cho a

= 1 chia hết cho a

=> n+1 và 2n+3 là hai số nguyên tố cùng nhau

Thắng  Hoàng
12 tháng 11 2017 lúc 7:23

Bạn Pikachu làm đúng đó^_^$$$

Nguyễn Xuân Toàn
12 tháng 11 2017 lúc 7:31

Gọi a là ước của n+1 và 2n+3

2n+3 - n+1 chia hết cho a

= 2n+3 - 2(n+1) chia hết cho a

= 2n+3 - 2n+2 chia hết cho a

= 1 chia hết cho a

=> n+1 và 2n+3 là hai số nguyên tố cùng nhau

Dương Thị Huyền Thục
Xem chi tiết
zZzNguyễnLêQuanAnhzZz
27 tháng 12 2016 lúc 17:29

Gọi d là Ước chung lớn nhất của chúng ta có

n+2 chia hết cho d 

2n+3 chia hết cho d

=>n+2-2n+3 chia hết cho d

=>2(n+2)-2n+3 chia hết cho d 

=>2n+4-2n+3 chia hết cho d

=>1 chia hết cho d 

=> d=1

Vậy ước chung của 2 số trên là 1 nên 2 số đó là 2 số nguyên tố cùng nhau

Đinh Đức Hùng
27 tháng 12 2016 lúc 17:29

Gọi d là ƯC (n + 2; 2n + 3) ( d ∈ N ) Nên ta có :

n + 2 ⋮ d và 2n + 3 ⋮ d

<=> 2(n + 2) ⋮ d và 1(2n + 3) ⋮ d

<=> 2n + 4 ⋮ d và 2n + 4 ⋮ d

=> (2n + 4) - (2n + 3) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯC ( n + 2 ; 2n + 3 ) = 1 => n + 2 và 2n + 3 là nguyên tố cùng nhau

Trần Thảo Vân
27 tháng 12 2016 lúc 18:56

Gọi d là ƯCLN (n + 2 ; 2n + 3)

\(\Rightarrow\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow2n+4-\left(2n+3\right)⋮d\)

     \(2n+4-2n-3⋮d\)

                 \(4-3⋮d\)

                     \(1⋮d\)\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+2;2n+3\right)=1\)

Vậy với mọi số tự nhiên n thì hai số n + 2 và 2n + 3 là hai số nguyên tố cùng nhau.