Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nam Trần
Xem chi tiết
Đặng Hà
Xem chi tiết
Uzumaki Naruto
Xem chi tiết
Chan
Xem chi tiết
Nguyễn Thị Trà My
16 tháng 5 2021 lúc 12:12

1) điều kiện của m: m khác 5/2

thế x=2 vào pt1 ta đc:

(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)

lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2

vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2

3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m

 

 

Soái muội
Xem chi tiết
Tomoe
21 tháng 2 2020 lúc 11:54

a, mx - 2x + 3 = 0

m = -4

<=> -4x - 2x + 3 = 0

<=> -6x = -3

<=> x = 1/2

b, mx - 2x + 3 = 0 

x = 2

<=> 2m - 2.2 + 3 =0

<=> 2m - 1 = 0

<=>  m = 1/2

Khách vãng lai đã xóa
Ha Nguyen
Xem chi tiết
Thiếu Quân Ngô Nguyên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 6 2019 lúc 13:00

Đáp án B

Quang Đẹp Trai
Xem chi tiết
Nguyễn Đức Trí
16 tháng 7 2023 lúc 14:02

\(6x^2y^4+3x^2-10y^3=-2\)

\(\Leftrightarrow3x^2\left(2y^3+1\right)-10y^3-5+5=-2\)

\(\Leftrightarrow3x^2\left(2y^3+1\right)-5\left(2y^3+1\right)=-7\)

\(\Leftrightarrow\left(3x^2-5\right)\left(2y^3+1\right)=-7\)

\(\Rightarrow\left(3x^2-5\right);\left(2y^3+1\right)\in\left\{-1;1;-7;7\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm\dfrac{2}{\sqrt[]{3}};\sqrt[3]{3}\right);\left(\pm\sqrt[]{2};\sqrt[3]{4}\right);\left(\varnothing;0\right);\left(\pm2;-1\right)\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm2;-1\right)\right\}\left(x;y\in Z\right)\)

 

Tuấn Hồ
16 tháng 7 2023 lúc 14:07

6x2y3 +3x2 - 10y3 = -2

\(_{_{ }^{ }\Leftrightarrow}\) 2y3(3x\(-\) 2) + 3x2 \(-\) 2= -4

\(_{_{ }^{ }\Leftrightarrow}\)\(\left(3x^2-2\right)\left(2y^3+1\right)=-4=-1.4=-2.2\)

Vì x2 \(\ge\)0 nên 3x2 -2 ​​\(\ge\)-2

Ta có các trường hợp:

TH1: \(\left\{{}\begin{matrix}3x^2-2=-1\\2y^3+1=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{1}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{3}{2}}\end{matrix}\right.\)

TH2: ​\(\left\{{}\begin{matrix}3x^2-2=2\\2y^3+1=-2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{2}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{-3}{2}}\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}3x^2-2=-2\\2y^3+1=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=0\\y=\sqrt[3]{\dfrac{1}{2}}\end{matrix}\right.\)

Vậy .....