cho C=1/12+1/30+1/56+...+1/2652.
chứng minh C<1/4
C = \(\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+......+\frac{1}{2652}\)
Chứng minh C < \(\frac{1}{4}\)
C=1/12+1/30+1/56 +...+1/2652. Cm C<1/4
Ta có : \(C=\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+...+\frac{1}{2652}=\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+..+\frac{1}{51.52}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{51}-\frac{1}{52}\)
\(=\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{51}+\frac{1}{52}\right)-2\left(\frac{1}{8}+\frac{1}{10}+...+\frac{1}{52}\right)\)
\(=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{51}+\frac{1}{52}-\left(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{26}\right)\)\(=\frac{1}{27}+\frac{1}{28}+...+\frac{1}{52}\)
Khi đó ta không thể chứng minh C < 1/4 vì sở dĩ \(\frac{1}{27}+\frac{1}{28}+...+\frac{1}{34}>\frac{1}{4}\)(bạn thử lấy máy tính tính xem)
(1-2/42)(1-2/56)(1-2/72)...(1-2/2652)
\(\left(1-\frac{2}{42}\right)\left(1-\frac{2}{56}\right)...\left(1-\frac{2}{2652}\right)\)
= \(\frac{40}{42}.\frac{54}{56}.\frac{70}{72}...\frac{2650}{2652}\)
= \(\frac{5.8}{6.7}.\frac{6.9}{7.8}.\frac{7.10}{8.9}...\frac{50.53}{51.52}\)
= \(\frac{5.6.7...50}{6.7.8...51}.\frac{8.9.10...53}{7.8.9...52}\)
= \(\frac{5}{51}.\frac{53}{7}=\frac{265}{357}\)
Chứng minh rằng:
a)\(\sqrt{1}+\sqrt{2}+...+\sqrt{8}< 24\)
b)\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>10\)
c)\(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{56}< 30\)
b, \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
.............................................
Cộng với vế 99 của BĐT trên, ta được:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}>99.\frac{1}{10}=\frac{99}{10}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{99}{10}=\frac{1}{10}=\frac{100}{10}=10\)
Wrecking Ball đã làm đúng
to ra kết quả giống cậu : Wrecking Ball
là đáp án đúng
tk nha ( chúc bn học gioi )
Tính nhanh:
\(\frac{9,1+10,2+...+17,9+19}{\left(1-\frac{2}{42}\right)\cdot\left(1-\frac{2}{56}\right)\cdot...\cdot\left(1-\frac{2}{2550}\right)\cdot\left(1-\frac{2}{2652}\right)}\cdot\frac{265}{357}\)
Làm nhanh cho mình trước 14h30p 30/7/2016
Ai làm được cho 5 lần tick
Cho A = 1/20 + 1/72 ; B = 1/2 + 1/6 +1/30 ; và C = 1/42 + 1/56 + 1/12 . Tính trung bình của A, B và C.
A = 1/20 + 1/72 = 23/360
B = 1/2 + 1/6 + 1/30 = 7/10
C = 1/42 + 1/56 + 1/12 = 1/8
Trung bình cộng của A, B và C là: (23/360 + 7/10 + 1/8) : 3 = 8/27
Đáp số: 8/27
a, Tính bằng cách hợp lí :
1/12+1/20+1/30+1/42+1/56+1/72+1/90+1/110+1/132
b, Chứng tỏ rằng :
1/501+1/502+1/503+........+1/1000 <1
a)Đặt \(A=\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
\(A=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}+\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}\)
\(A=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)
\(A=\dfrac{1}{3}-\dfrac{1}{12}\)
\(A=\dfrac{1}{4}\)
b)Đặt \(B=\dfrac{1}{501}+\dfrac{1}{502}+...+\dfrac{1}{1000}\)(có 500 số hạng)
\(B< \dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\)(có 500 số hạng)
\(B< 500\cdot\dfrac{1}{500}=1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
A=1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72
Ai nhanh nhat minh se tik cho nha nhan len nhe
A=1/2+1/6+....+1/56+1/72
A=1/1.2+1/2.3+...+1/7.8+1/8.9
A=1/1-1/2+1/2-1/3+...+1/7-1/8+1/8-1/9
A=1/1-1/9=9/9-1/9=8/9
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..\frac{1}{8.9}\)
A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{8}-\frac{1}{9}\)
A=1-\(\frac{1}{9}\)=\(\frac{8}{9}\)
Cho biểu thức M=1/30 +1/42 +1/56 +1/72 +1/90 +1/110 +1/132
Chứng minh rằng M bé hơn 1/7
\(M=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
=> \(M=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
=> \(M=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)
=> \(M=\frac{1}{5}-\frac{1}{12}=\frac{12}{60}-\frac{5}{60}=\frac{7}{60}>\frac{7}{70}=\frac{1}{7}\)
Đến đây tự hiểu nhá ...