The triangle has 3 edges, include: AB edge, BC edge, AC edge. Know that AB=36cm, BC=32cm, AC=4dm.Calculate perimeter triangle.
1. Two bisector BD and CE of the triangle ABC intersect at O. Suppose that BD.CE = 2BO.OC . Denote by H the point in BC such that .\(OH⊥BC\) . Prove that AB.AC = 2HB.HC
2. Given a trapezoid ABCD with the based edges BC=3cm , DA=6cm ( AD//BC ). Then the length of the line EF ( \(E\in AB,F\in CD\) and EF // AD ) through the intersection point M of AC and BD is ............... ?
3. Let ABC be an equilateral triangle and a point M inside the triangle such that \(MA^2=MB^2+MC^2\) . Draw an equilateral triangle ACD where \(D\ne B\) . Let the point N inside \(\Delta ACD\) such that AMN is an equilateral triangle. Determine \(\widehat{BMC}\) ?
4. Given an isosceles triangle ABC at A. Draw ray Cx being perpendicular to CA, BE perpendicular to Cx \(\left(E\in Cx\right)\) . Let M be the midpoint of BE, and D be the intersection point of AM and Cx. Prove that \(BD⊥BC\)
Let ABC be an isoceles triangle (AB = AC) and its area is 501cm2. BD is the internal bisector of the angle ABC (D ∈ AC), E is a point on the opposite ray of CA such that CE = CB. I is a point on BC such that CI = 1/2 BI. The line EI meets AB at K, BD meets KC at H. Find the area of the triangle AHC.
bái phục giờ vẫn còn thi toán tiếng anh á ghê á nha
thi xog cấp tỉnh là vứt luôn nhác thi lắm luôn
Consider an acute triangle ABC of area S. Let CD vuong goc AB(D thuoc AB), DM vuong goc AC (M thuoc AC) and DN vuong goc BC(N thuoc BC). Denote by H1 and H2 the orthocentres of the triangle MNC, MND respectively. Find the area of the qudrilateral AH1BH2 in terms of S.
Tam giác `ABC` có đường AH thỏa mãn `AH^2 = CH.BH` thì khẳng định nào đúng?
`\triangle ABC` vuông ở `A`
`AB^2 = BH.BC`
`\triangle AHB` đồng dạng `\triangle CHA`
`AB^2 +AC^2 = BC^2`
Cho tam giác ABC vuông ở `A,AB=3;AC=4`. Đường cao `AH`. Tính `AH`?
Câu 1: Cả 4 câu đều đúng
Câu 2:
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>BC=5
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot5=3\cdot4=12\)
=>AH=2,4
Given a triangle ABC having BAC = 1200, and AC= 2AB. The line passing through A perpendicular to AC intersects the perpendicular bisector of BC at O. Prove that the triangle OBC is an equilateral triangle
Giúp mk vs mk đang cần gấp
Let ABC be an isoceles triangle (AB = AC) and its area is 501cm2. BD is the internal bisector of the angle ABC (D ∈ AC), E is a point on the opposite ray of CA such that CE = CB. I is a point on BC such that CI = 1/2 BI. The line EI meets AB at K, BD meets KC at H. Find the area of the triangle AHC.
Giúp mình với! Mình sắp thi rồi.
Let ABC be an isoceles triangle (AB = AC) and its area is 501cm2. BD is the internal bisector of the angle ABC (D ∈ AC), E is a point on the opposite ray of CA such that CE = CB. I is a point on BC such that CI = 1/2 BI. The line EI meets AB at K, BD meets KC at H. Find the area of the triangle AHC.
Ghi lời giải dùm mình nha.
Thaks nhiều
Given acute triangle ABC(AB<AC). O is the midpoint of BC, BM and CN are the altitudes of triangle ABC. The bisectors of angle \(\widehat{BAC}\)and \(\widehat{MON}\)meet each other at D. AD intesects BC at E. Prove that quadrilateral BNDE is inscribed in a circle.s
( HELP ME )
with triangle ABC, d is the line passing through B, E of AC. Via E draw straight lines parallel to AB and BC cut d at M, N. D is the intersection of ME and BC. NE lines cut AB and MC at F and K. CMR AFN triangles are in the same form as the MDC triangle