A=21+22+23+24+.....+260
a)Thu gọn tổng A
b)chứng tỏ tổng a chia hết cho 3
Chứng tỏ rằng:
A=2+22+23+24+...+260 chia hết cho 7
Số số hạng của A:
60 - 1 + 1 = 60 (số)
Do 60 ⋮ 3 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:
A = (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)
= 1.7 + 2⁴.7 + ... + 2⁵⁸.7
= 7.(1 + 2⁴ + ... + 2⁵⁸) ⋮ 7
Vậy A ⋮ 7
Không tính tổng. Hãy chứng tỏ rắng tổng sau không chia hết cho 3: 21995 + 1996 + 1997 + 1998 + 1999 + 2000.
vì tổng các chữ số trong các số trên là không chia hết cho 3
Vì số lẻ cộng với số chẵn sẽ ra kết quả khong chia hết cho 3
chứng tỏ rằng tổng của 3 số tự nhiên liên tiếp chia hết cho 3
Gọi 3 stn liên tiếp là: a;a+1;a+2
Ta có : a+a+1+a+2=3a+(1+2)=3a+3
Mà 3a chia hết cho 3 ; 3 chia hết cho 3
Nên 3a+3 chia hết cho 3
Vậy tổng 3 stn liên tiếp chia hết cho 3
Gọi 3 số tự nhiên liên tiếp đó lần lượt là a;a+1;a+2
ta có :a+(a+1)+(a+2)=3a +3=3.(a+1) chia hết cho3
Vậy 3 số tự nhiên liên tiếp chia hết cho 3
Giải :
Tổng 3 STN liên tiếp bằng :
A + ( A +1 ) + ( A + 2 )
= ( A + A + A ) + ( 1 + 2 )
= 3A + 3
Mà 3A chia hết cho 3; 3 chia hết cho 3
\(\Rightarrow\)A + ( A + 1 ) + ( A + 2 ) chia hết cho 3 với mọi A ( đpcm ).
Chứng tỏ rằng tổng của các số tự nhiên có 3 chữ số chia hết cho 2 và 5
2 số không chia ết cho 3 , khi chia cho 3 thì được những số dư khác nhau . Chứng tỏ rằng tổng của 2 số đó chia hết cho 3 .
Theo đề bài , ta có :
a = 3q + 1 ( q \(\in\) N )
b = 3q + 2 ( p \(\in\) N )
Do đó : a + b = ( 3q + 1 ) + ( 3p + 2 )
= 3q + 3p + 3
= 3( q + p + 1 ) \(\vdots\) 3 vì 3 \(\vdots\) 3
Vậy tổng a + b \(\vdots\) 3
chứng tỏ rằng tổng cả 4 số tự nhiên liện tiếp không chia hết cho 4
Gọi 4 stn liên tiếp là:a;a+1;a+2;a+3
Ta có: a+a+1+a+2+a+3=4a.(1+2+3)=4a.6
Mà 4a chia hết cho 4 ; 6 không chia hết cho 4
Nên 4a.6 không chia hết cho 4
Vậy tổng 4 stn liên tiếp ko chia hết cho 4
cho 4 số tn không chia hết cho 5 khi chia cho 5 thì được số dư khác nhau chứng tỏ rằng tổng của chúng chia hết cho 5
Cho 3 số nguyên tố lớn hơn 3.Hãy chứng tỏ rằng luôn tồn tại 2 số có tổng hoặc hiệu chia hết cho 12.
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
Cho tổng S = 3+3^2+3^3+3^4+...+3^2015
a) Tính S b) Chứng tỏ Schia hết cho 13
Ta có :
S=3+32+33+34+....+32015
3S=32+33+34+35+....+32016
3S-S=(32+33+34+35+....+32016)-(3+32+33+....+32015)
2S=32016-3
S=(32016-3):2
Chứng tỏ rằng giá trị của tổng sau luôn chia hết cho 31
A = 5 +5^2+5^3+5^4+5^4+5^6+....+5^58+5^59+5^60