So sánh
a) 3^39 và 11^21
b)12^45-12^44 và 12^44-12^43
c)1+2+2^2+2^3+...+2^9 và 5.2^8
mink can gap
1.So sánh 1) 243^5 và 3.27^8 2) 3^54 và 2^200 3) 3^300 và 2^200 4) 15^12 và 01^3.125^3 5) 78^12-78^11 và 78^11-78^10 6) 125^5 và 25^7 7) 72^45-72^44 và 27^44 8) 3^39 và 11^11
1: 243^5=(3^5)^5=3^25
3*27^8=3*(3^3)^8=3^25
=>243^5=3*27^8
6: 125^5=(5^3)^5=5^15
25^7=(5^2)^7=5^14
=>125^5>25^7(15>14)
5: 78^12-78^11=78^11(78-1)=78^11*77
78^11-78^10=78^10*77
mà 11>10
nên 78^12-78^11>78^11-78^10
2. So sánh 1) 243^5 và 3.27^8 2) 3^54 và 2^200 3) 3^300 và 2^200 4) 15^2 và 81^3.125^3 5) 78^12-78^12 và 78^11-78^10 6) 125^5 và 25^7 7) 72^45-72^44 và 27^44.49 9) 3^39 và 11^11
1: 243^5=(3^5)^5=3^25
3*27^8=3*3^24=3^25=243^5
3: 3^300=27^100
2^200=4^100
mà 27>4
nên 3^300>2^200
4: 15^2=3^2*5^2
81^3*125^3=3^12*5^9
=>15^2<81^3*125^3
6: 125^5=5^15
25^7=5^14
mà 15>14
nên 125^5>25^7
so sanh
1/ 2^100 và 1024^8
2/ 5^40 và 620^10
3/ 12^44 và 9^22
4/ 25^45 và 125^30
so sánh
a) 1/2^2+1/2^3+...1/2^2014 và 1
b)A=10^11-1/10^12-1 và B=10^10+1/10^11+1
Giải:
a) Gọi dãy đó là A, ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\)
\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\)
\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\)
Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\)
\(\Rightarrow A< 1\)
b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
Ta có:
\(A=\dfrac{10^{11}-1}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-10}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\)
\(10A=1+\dfrac{9}{10^{12}-1}\)
Tương tự:
\(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\)
\(10B=1+\dfrac{9}{10^{11}+1}\)
Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\)
\(\Rightarrow A< B\)
so sánh 2 p/s 45/46 44/ 47 ; 12/13 và 11/14
So sánh:
a,2^10 và 3^12
b,33^52 và 44^39
\(a,\) Ta có : \(\hept{\begin{cases}2^{10}=2^{10}\\3^{12}=3^{10}.3^2\end{cases}}\)
Vì \(3^{10}>2^{10}\Rightarrow2^{10}< 3^{10}.3^2\)
Hay \(2^{10}< 3^{12}\)
\(b,\) Ta có : \(\hept{\begin{cases}33^{52}=\left(33^4\right)^{13}=1185921^{13}\\44^{39}=\left(44^3\right)^{13}=85184^{13}\end{cases}}\)
Vì \(1185921^{13}>85184^{13}\)
Do đó : \(33^{52}>44^{39}\)
bài 45:so sánh
a)3\(\sqrt{3}\) và \(\sqrt{12}\)
b)7 và 3\(\sqrt{5}\)
c)\(\dfrac{1}{3}\sqrt{51}\) và \(\dfrac{1}{5}\sqrt{150}\)
d)\(\dfrac{1}{2}\sqrt{6}\) và \(6\sqrt{\dfrac{1}{2}}\)
a) \(3\sqrt{3}=\sqrt{27}>\sqrt{12}\)
b) \(3\sqrt{5}=\sqrt{45}>\sqrt{27}\)
c) \(\dfrac{1}{3}\sqrt{51}=\sqrt{\dfrac{51}{9}}< \sqrt{\dfrac{54}{9}}=6=\sqrt{\dfrac{150}{25}}=\dfrac{1}{5}\sqrt{150}\)
d) \(\dfrac{1}{2}\sqrt{6}=\sqrt{\dfrac{6}{4}}=\sqrt{\dfrac{3}{2}}< \sqrt{\dfrac{36}{2}}=6\sqrt{\dfrac{1}{2}}\)
1. 6^7 và 12^5
2. 21^12 và 54^4
3. 33^44 và 44^33
4. 10^30 và 2^100
bạn ơi cho mk hỏi đề bài yêu cầu j thế ak
So sánh:
a,339 và 1121
b,7245-7244 và 7244-7243
c,S=1+2+23+...+29
So sánh S với 5.28
d,Gọi m là số các số có 9 chữ số mà trong cách ghi của nó không có chữ số 0.Hãy so sánh m với 10.98