Rut gon bieu thuc:
m=\(\frac{2^5.15^3}{6^3.10^2}\)
Cho bieu thuc:
P=\(\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
a. Rut gon bieu thuc P
b.Tim GTLN cua P sau khi rut gon
đk: x>=0; x khác 3
a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)
ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) rut gon bieu thuc gium em a thanks
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
Rut gon bieu thuc
1)\(\frac{\sqrt{6-2\sqrt{5}}}{2-2\sqrt{5}}\)
2)\(\frac{\sqrt{7-4\sqrt{3}}}{1-\sqrt{3}}\)
1) \(\frac{\sqrt{6-2\sqrt{5}}}{2-2\sqrt{5}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{2\left(1-\sqrt{5}\right)}=\frac{\sqrt{5}-1}{2\left(1-\sqrt{5}\right)}=-\frac{1}{2}\)
2) \(\frac{\sqrt{7-4\sqrt{3}}}{1-\sqrt{3}}=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{1-\sqrt{3}}=\frac{2-\sqrt{3}}{1-\sqrt{3}}\)
1) \(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}\)
\(=\frac{2^{10}}{2^{10}}-\frac{2^5.3^3.5^3}{2^3.3^3.2^2.5^2}\)
\(=1-5=-4\)
ik nhé. tks bạn!
Rut gon bieu thuc : \(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}\)
Rut gon bieu thuc sau
A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.......+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
\(A=\frac{2^{100}-1}{2^{100}}\)
\(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}\)
\(=\frac{2^{10}}{2^{10}}-\frac{2^5.\left(3.5\right)^3}{\left(2.3\right)^3.\left(2.5\right)^2}=1-\frac{2^5.3^3.5^3}{2^3.3^3.2^2.5^2}=1-\frac{2^5.3^3.5^3}{2^5.3^3.5^2}=1-5=-4\)
\(\frac{2^4.2^6}{\left(2^5\right)^2}\)-\(\frac{2^5.15^3}{6^3.10^2}\)
\(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}\)
\(=\frac{2^{10}}{2^{10}}-\frac{2^5.5^3.3^3}{2^3.3^3.2^2.5^2}\)
\(=1-\frac{2^5.5^3.3^3}{2^5.3^3.5^2}\)
\(=1-5\)
\(=-4\)
Học tốt
Trả lời:
\(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}\)
\(=\frac{2^{10}}{2^{10}}-\frac{2^5.\left(3.5\right)^3}{\left(2.3\right)^3.\left(2.5\right)^2}\)
\(=1-\frac{2^5.3^3.5^3}{2^3.3^3.2^2.5^2}\)
\(=1-\frac{2^5.3^3.5^3}{2^5.3^3.5^2}\)
\(=1-5\)
\(=-4\)
Học tốt
Tính \(\frac{2^5.15^3}{6^3.10^2}\)