Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
loan leo
Xem chi tiết
alibaba nguyễn
26 tháng 11 2016 lúc 18:15

\(5x^2+y^2=17+2xy\)

\(\Leftrightarrow4x^2+\left(x-y\right)^2=17\)

Từ đây ta nhận xét rằng 17 tách thành tổng 2 số chính phương trong đó có 1 số chia hết cho 4. Từ đó ta có 

[4x2, (x - y)2] = (16, 1)

Tới đây thì đơn giản rồi bạn tự làm tiếp nhé

Nguyễn Nhật Minh
Xem chi tiết
Phạm Thế Mạnh
17 tháng 12 2015 lúc 13:16

\(\Leftrightarrow\left(2x\right)^2+\left(x-y\right)^2=17\)
\(\Rightarrow\left(2x\right)^2\le17 \)
\(\Leftrightarrow4x^2\le16\)
\(\Leftrightarrow x^2\le4\)
\(x\in\left\{-2;-1;0;1;2\right\}\)
kẻ bảng thay từng giá trị vào
 

Fire Sky
Xem chi tiết
Chu Thị Hiền
Xem chi tiết
Sáng
13 tháng 2 2023 lúc 19:08

\(xy^2-2xy+x+y^2=6\Leftrightarrow x\left(y^2-2y+1\right)+y^2-1=5\)

\(\Leftrightarrow x\left(y-1\right)^2+\left(y-1\right)\left(y+1\right)=5\)

\(\Leftrightarrow\left(y-1\right)\left(xy-x+y+1\right)=5\)

\(Ư\left(5\right)=\left(-5;-1;1;5\right)\)

y-1-5-115
y-4026
xy-x+y+1-1-551
x-2/562-6/5

 

Vì \(x;y\in Z\Rightarrow\left[{}\begin{matrix}\left(x;y\right)=\left(6;0\right)\\\left(x;y\right)=\left(2;2\right)\end{matrix}\right. \)

 

Bùi nguyễn Hoài Anh
Xem chi tiết
Minh Triều
9 tháng 3 2016 lúc 22:50

Đuối ko giải nổi

etyrty
Xem chi tiết

\(xy^2\) - \(2xy\) + \(x\)  + \(y^2\) = 6

\(x\)\(y^2\) - \(2y\) + 1 ) + \(y^2\) - 1  = 5

\(x\) ( \(y-1\) ) 2  + ( \(y-1\))(\(y+1\)) = 5

       (\(y-1\))( \(xy-x\) + y + 1) = 5

Ư(5) ={ -5; -1; 1; 5)

ta có bảng :

y- 1    -5   -1   1   5
y  -4   0   2   6
xy-x+y+1   -1  -5  5  1
x   -2/5    6   2     -6/5

 

Vì x, y \(\in\) Z nên (x, y ) = ( 0; 6); ( 2; 2) 

 

 

My Nguyễn
Xem chi tiết
tth_new
8 tháng 2 2019 lúc 16:05

PT \(\Leftrightarrow\left(3x^2-5x\right)-2xy+\left(y+2\right)=0\)

Xét \(\Delta'=y^2-\left(y+2\right)\ge0\Leftrightarrow y^2-y-2\ge0\)

\(\Leftrightarrow-y^2+y+2\le0\Leftrightarrow\left(y-2\right)\left(y+1\right)\)

\(\Leftrightarrow-1\le y\le2\)

Thế vô làm tiếp :v

My Nguyễn
Xem chi tiết
AhJin
Xem chi tiết
Nguyễn Minh Quang
17 tháng 3 2021 lúc 7:19

a. ta có 

\(4x^2+\left(x-y\right)^2=17\)

do x nguyên nên \(4x^2\in\left\{0,4,16\right\}\) tương ứng ta tìm được \(\left(x-y\right)^2\in\left\{17,13,1\right\}\)

vậy chỉ có \(\hept{\begin{cases}4x^2=16\\\left(x-y\right)^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\\orbr{\begin{cases}y=3\\y=1\end{cases}}\end{cases}}}\text{ hoặc }\hept{\begin{cases}x=-2\\\orbr{\begin{cases}y=-1\\y=-3\end{cases}}\end{cases}}\)\(\hept{\begin{cases}4x^2=16\\\left(x-y\right)^2=1\end{cases}\Rightarrow\left(x,y\right)\in\left\{\left(2,1\right);\left(2,3\right);\left(-2;-1\right);\left(-2;-3\right)\right\}}\)

b. ta có \(9xy+3x+3y=12\Leftrightarrow\left(3x+1\right)\left(3y+1\right)=13\)

từ đó \(\Rightarrow\hept{\begin{cases}3x+1=\pm1\\3y+1=\pm13\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}3x+1=\pm13\\3y+1=\pm1\end{cases}}\) vậy ta tìm được \(\left(x,y\right)\in\left\{\left(0,4\right),\left(4,0\right)\right\}\)

Khách vãng lai đã xóa
Nguyễn Quốc Huy
Xem chi tiết
Lê Song Phương
3 tháng 12 2021 lúc 18:02

1.  \(2xy-x+y=3\)\(\Leftrightarrow4xy-2x+2y=6\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)=5\)

\(\Leftrightarrow\left(2y-1\right)\left(2x+1\right)=5\)

Ta lập bảng giá trị:

\(2y-1\)15-1-5
\(2x+1\)51-5-1
\(x\)20-3-1
\(y\)130-2

Vậy phương trình đã cho có cách nghiệm nguyên (2;1);(0;3);(-3;0) và (-1;-2)

Khách vãng lai đã xóa
Nguyễn Hoàng Bảo Quân
3 tháng 12 2021 lúc 17:52

 2xy-x+y=3

2(2xy-x+y)=2.3

4xy-2x+2y=6

2x(2y-1)-2y=6

2x(2y-1)-2y+1=6+1

2x(2y-1)-(2y-1)=7

(2x-1)(2y-1)=7

Khách vãng lai đã xóa
Lê Bảo Nguyên
3 tháng 12 2021 lúc 19:10
2x²+5x²y=???
Khách vãng lai đã xóa