Tìm x,y,z : (3x-2y)^4 +(3y-4z)^2+ /xy+xz-zy-240/ = 0
cho 3 số x,y,z>0 xy+yz+xz=xyz Tìm GTNN của biểu thức:
M=1/4x+3y+z + 1/x+4y+3x + 1/3x+y+4z
Sửa thành tìm GTLN nhé !
Với x,y,z>0 chia 2 vế của \(xy+yz+xz=xyz\) cho \(xyz\) ta có :
\(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{4x+3y+z}\le\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)\). Tương tự cho 2 BĐT kia:
\(\frac{1}{x+4y+3z}\le\frac{1}{64}\left(\frac{1}{x}+\frac{4}{y}+\frac{3}{z}\right);\frac{1}{3x+y+4z}\le\frac{1}{64}\left(\frac{3}{x}+\frac{1}{y}+\frac{4}{z}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(M\leΣ\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)=Σ\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}\)
Đẳng thức xảy ra khi \(x=y=z=3\)
1)x/2=y/3=z/-4 và 3x-2z=99
2)x/2=y/3=z/6 và 4y-3x=66
3)x/4=y/3 và 3y=5z và x-y-z=100
4)x/5=y/3=z/2 và 2x-3y=100
5)x/5=y/2 và xy=90
6)x/4=y/5 và xy=20
7)x/2=y=2/3 và 3x-2y+4z=16
8)x=y/6=z/3 và 2x-3y+4z=-24
Cho x,y,z >0 thỏa xy + yz + xz >= 1
Tìm GTNN của:
\(P=3x^2+3y^2+8z^2+\frac{2}{\sqrt{7y^2+4z^2+10xy+28xz}}\)
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Tìm x, y , z
\(\left(3x-2y\right)^2+\left(3y-4z\right)^4+\left(x^2+y^2+z^2-1\right)=0\)
\(\left(3x-2y\right)^2+\left(3y-4z\right)^4+\left(x^2+y^2+z^2-1\right)=0\)
Vì \(\left(3x-2y\right)^2\ge0;\left(3y-4x\right)^4\ge0\)
\(\Rightarrow VT=0\Leftrightarrow3x-2y=0;3y-4z=0;x^2+y^2+z^2-1=0\)
....... ( típ theo tự làm nhé eiu)
Cho x,y,z là các số thực dương thoả mãn: \(2\sqrt{xy}+\sqrt{xz}=1\).
CMR: \(3y^2z^2+4z^2x^2+5x^2y^2\ge4xyz\)
\(1=2\sqrt{xy}+\sqrt{xz}\le x+y+\dfrac{1}{2}\left(x+z\right)=\dfrac{1}{2}\left(3x+2y+z\right)\)
\(\Rightarrow3x+2y+z\ge2\)
BĐT cần chứng minh tương đương:
\(\dfrac{5xy}{z}+\dfrac{4xz}{y}+\dfrac{3yz}{x}\ge4\)
Ta có:
\(VT=3\left(\dfrac{xy}{z}+\dfrac{xz}{y}\right)+2\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+\left(\dfrac{xz}{y}+\dfrac{yz}{x}\right)\)
\(VT\ge3.2\sqrt{\dfrac{x^2yz}{yz}}+2.2\sqrt{\dfrac{xy^2z}{xz}}+2\sqrt{\dfrac{xyz^2}{xy}}=2\left(3x+2y+z\right)\ge2.2=4\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
3x=2y=z và x+y+z=99
2x=3y=-2z và 2x-3y+4z=48
x/0.5=y/0.3=z/0.2 và 2x+3y-4z=34
x-1/3=y-2/4=z-3/5 và x+y+z=30
x+1/3=y+2/-4=z-3/5 và 3x+2y+4z=47
x/4=y/4 và x^2y=100
giúp mình với
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x+y+z-6}{12}=\frac{24}{12}=2\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=10\\z=13\end{cases}}\)
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
Cho x,y,z t/m: xy+yz+xz=xyz
Tìm GTLN:
\(\frac{1}{4x+3y+z}+\frac{1}{x+4y+3z}+\frac{1}{3x+y+4z}\)
Lời giải:
Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\ge\frac{8^2}{4x+3y+z}\)
\(\Leftrightarrow\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\ge\frac{64}{4x+3y+z}\)
Thiết lập tương tự với các phân thức còn lại:
\(\frac{4}{y}+\frac{3}{z}+\frac{1}{x}\ge\frac{64}{4y+3z+x}\)
\(\frac{4}{z}+\frac{3}{x}+\frac{1}{y}\ge\frac{64}{3x+y+4z}\)
Cộng theo vế: \(8\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge64\left(\frac{1}{4x+3y+z}+\frac{1}{x+4y+3z}+\frac{1}{3x+y+4z}\right)\)
\(\Leftrightarrow\frac{1}{4x+3y+z}+\frac{1}{x+4y+3z}+\frac{1}{3x+y+4z}\le\frac{1}{8}\)
Vậy GT:N của biểu thức là \(\frac{1}{8}\) khi \(x=y=z=3\)