a, {2n +13} : {n+2}
b, {5n +19} : {n+2}
c{4n +19} : n+3}
d {3n +21} : {n+1}
e{2n +27} : {n+7}
a) lim n-1/ 2n+7
b) lim 4n^2 -n+1/6n^2 +1
c) lim 3n^2-n/1-n^2
d)lim 8n+1/n^2-2n+19
e) lim (căn 9n^2 -4 ) +2n /2n+7
a/ \(=\lim\limits\frac{1-\frac{1}{n}}{2+\frac{7}{n}}=\frac{1-0}{2+0}=\frac{1}{2}\)
b/ \(=lim\frac{4-\frac{1}{n}+\frac{1}{n^2}}{6+\frac{1}{n^2}}=\frac{4-0+0}{6+0}=\frac{4}{6}=\frac{2}{3}\)
c/ \(=lim\frac{3-\frac{1}{n}}{\frac{1}{n^2}-1}=\frac{3-0}{0-1}=\frac{3}{-1}=-3\)
d/ \(=lim\frac{\frac{8}{n}+\frac{1}{n^2}}{1-\frac{2}{n}+\frac{19}{n^2}}=\frac{0+0}{1-0+0}=\frac{0}{1}=0\)
e/ \(=lim\frac{\sqrt{9-\frac{4}{n^2}}+2}{2+\frac{7}{n}}=\frac{\sqrt{9}+2}{2+0}=\frac{5}{2}\)
TÍNH CÁC GIỚI HẠN SAU:
a) lim n^3 +2n^2 -n +1
b) lim n^3 -2n^5 -3n-9
c)lim n^3 -2n/ 3n^2+n-2
d) lim 3n-2n^4/ 5n^2 -n +12
e) lim ( căn(2n^2 +3) - căn n^2 +1
f) lim căn( 4n^2 -3n) -2n
Tính các giới hạn sau:
a) lim n^3 +2n^2 -n+1
b) lim n^3 -2n^5 -3n-9
c) lim n^3 -2n/ 3n^2 +n-2
d) lim 3n -2n^4/ 5n^2 -n+12
e) lim (căn 2n^2 +3 - căn n^2 +1)
f) lim căn (4n^2-3n). -2n
Tìm các số Z n sao cho
a/ A= 20n + 13 / 4n + 3 có giá trị lớn nhất - nhỏ nhất
b/ B= 6n + 19 / 2n + 3 có giá trị lớn nhất - nhỏ nhất
c/ C= 12 -3n / n - 2 có giá trị lớn nhất - nhỏ nhất
d/ D= 5n + 7 / 2n + 3 có giá trị lớn nhất - nhỏ nhất
Chứng minh rằng
a)n+3/n+4
b)3n+3/9n+8
c)4n+3/5n+4
d)n+1/2n+3
e)2n+3/4n+8
f)3n+2/5n+3
d) Gọi d là ƯCLN của n+1 và 2n+3, ta có:
(2n+3)-(n+1) chia hết cho d
=> (2n+3)-2(n+1) chia hết cho d
=> 2n+3-2n-2 chia hết cho d
=> 2n-2n+3-2 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy n+1/2n+3 là 2 phân số tối giản
e) Gọi d là UwCLN của 2n+3 và 4n+8, ta có:
(4n+8)-(2n+3) chia hết cho d
4n+8-2(2n+3) chia hết cho d
4n+8-4n-6 chia hết cho d
4n-4n+8-6 chia hết cho d
2 chia hết cho d => d=2
nhưng vì 2n+3 lẻ nên d là số lẻ => d=1
vậy 2n+3/4n+8 là 2 phân số tối giản
f) gọi d là ưcln của 3n+2 và 5n+3, ta có
(3n+2)-(5n+3) chia hết cho d
5(3n+2)-3(5n+3) chia hết cho d
15n+10-15n-9 chia hết cho d
15n-15n+10-9 chia hết cho d
1 chia hết cho d => d=1
vậy 3n+2/5n+3 là 2 phân số tối giản
Tim n thuoc N
a) n+5 chia het cho n
b) 3n+13 chia het cho n
c) 27-5n chia het cho n
d) 2n+3 chia het cho n-2
e) 3n+1 chia het cho 11-2n
a) vi n chia het cho n nen n+5 chia het cho n khi 5 chia het cho n
do do n thuoc U(5)={1;5}
vay n=1 hoac n=5
xin loi nhe tu tu roi minh giai tiep nhe
Tính các giới hạn sau
1,Lim\(\left(\dfrac{2n^3}{2n^2+3}+\dfrac{1-5n^2}{5n+1}\right)\)
2,a,Lim\(\left(\sqrt{n^2+n}-\sqrt{n^2+2}\right)\)
b,Lim\(\dfrac{\sqrt{n^4+3n-2}}{2n^2-n+3}\)
c,Lim\(\dfrac{\sqrt{n^2-4n}-\sqrt{4n^2+1}}{\sqrt{3n^2+1}-n}\)
\(a=\lim\left(\dfrac{2n^3\left(5n+1\right)+\left(2n^2+3\right)\left(1-5n^2\right)}{\left(2n^2+3\right)\left(5n+1\right)}\right)\)
\(=\lim\left(\dfrac{2n^3-13n^2+3}{\left(2n^2+3\right)\left(5n+1\right)}\right)=\lim\dfrac{2-\dfrac{13}{n}+\dfrac{3}{n^3}}{\left(2+\dfrac{3}{n^2}\right)\left(5+\dfrac{1}{n}\right)}=\dfrac{2}{2.5}=\dfrac{1}{5}\)
\(b=\lim\left(\dfrac{n-2}{\sqrt{n^2+n}+\sqrt{n^2+2}}\right)=\lim\dfrac{1-\dfrac{2}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1+\dfrac{2}{n}}}=\dfrac{1}{2}\)
\(c=\lim\dfrac{\sqrt{1+\dfrac{3}{n^3}-\dfrac{2}{n^4}}}{2-\dfrac{2}{n}+\dfrac{3}{n^2}}=\dfrac{1}{2}\)
\(d=\lim\dfrac{\sqrt{1-\dfrac{4}{n}}-\sqrt{4+\dfrac{1}{n^2}}}{\sqrt{3+\dfrac{1}{n^2}}-1}=\dfrac{1-2}{\sqrt{3}-1}=-\dfrac{1+\sqrt{3}}{2}\)
Tìm n thuộc z
a. 3n+5 chia hết cho(ko gõ được kí hiệu nên mình gõ như này) n-1
b. 3n-11 chia hết cho n-2
c. 4n+13 chia hết cho 2n-1
d. 3n+19 chia hết cho 2n-3
Bài 1
a)15 : n - 3 b) 21:3n
c)n+11:n-1 d)n+6:n-1
e)2n +8 :2n-7 g)4n-8:4n-13
các bạn giải cho mình công thức bài này nhé