Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đăng Khang
Xem chi tiết
vân anh
Xem chi tiết
Phạm Văn Chí
Xem chi tiết
mỹ ngân ngô
Xem chi tiết
Ran Shibuki
Xem chi tiết
Nguyen Cao Cong
Xem chi tiết
Hoàng Thị Thương
Xem chi tiết
Bảo Thiii
Xem chi tiết

Gọi E là giao điểm của PQ và AB

Ta có: MNPQ là hình bình hành

=>MN//PQ

=>\(\hat{BMN}=\hat{BEP}\) (hai góc đồng vị)

\(\hat{BEP}=\hat{QPD}\) (hai góc so le trong, AB//CD)

nên \(\hat{BMN}=\hat{DPQ}\)

Xét ΔBMN và ΔDPQ có

\(\hat{BMN}=\hat{DPQ}\)

\(\hat{MBN}=\hat{PDQ}\) (ABCD là hình bình hành)

Do đó: ΔBMN~ΔDPQ

=>\(\frac{BM}{DP}=\frac{BN}{DQ}=\frac{MN}{PQ}=1\)

=>BM=DP; BN=DQ

Xét tứ giác BMDP có

BM//DP

BM=DP

Do đó: BMDP là hình bình hành

=>BD cắt MP tại trung điểm của mỗi đường(1)

Ta có: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường(2)

ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(3)

Từ (1),(2),(3) suy ra BD,MP,NQ,AC đồng quy tại trung điểm của mỗi đường

hay hình bình hành MNPQ có chung tâm O với hình bình hành ABCD

Bùi Thị Lan
Xem chi tiết
Akai Haruma
14 tháng 11 2023 lúc 20:03

Lời giải:

Vì $ABCD$ là hình bình hành nên $AB\parallel CD$

$\Rightarrow AE\parallel CF(1)$

Vì $ABCD$ là hình bình hành nên $AB=CD$

$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$

$\Rightarrow AE=CF(2)$

Từ $(1); (2)$ xét tứ giác $AECF$ có 2 cạnh đối $AE, CF$ song song và bằng nhau nên $AECF$ là hình bình hành.

thịnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 11 2021 lúc 18:36

Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành