Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
-Trung- Noob FF
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
3 tháng 10 2023 lúc 23:03

HS quan sát video hướng dẫn.

Chaeyoung Jeon
Xem chi tiết
DreamWasTaken
Xem chi tiết
Mạnh Hùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 14:45

Số đoạn thẳng có mút là các đỉnh của hình lục giác là;

\(C^2_6=15\left(đoạn\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
3 tháng 10 2023 lúc 23:04

Trong ba hình, hình a và hình c chồng khít với chính nó ở vị trí trước khi quay.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 10 2017 lúc 17:04

Chọn D

Cách 1:

 

Gọi các điểm được đánh dấu để chia đều các cạnh của tứ diện đều ABCD như hình vẽ.

+ Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu.

Số phần tử của S là số cách chọn ra 3 điểm không thẳng hàng trong số 18 điểm đã cho.

Chọn ra 3 điểm trong 18 điểm trên: có  C 18 3  cách.

Chọn ra 3 điểm thẳng hàng trong 18 điểm trên có 6. C 6 3 = 6 cách.

Suy ra số tam giác thỏa mãn là  C 18 3 - 6 = 810

+ Gọi T là tập hợp các tam giác lấy từ ABCD sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện ABCD.

- Chọn 1 cạnh của tứ diện để mặt phẳng chứa tam giác chỉ song song với đúng cạnh đó: có  C 6 1  cách.

Xét các tam giác mà mặt phẳng chứa nó chỉ song song với cạnh BD, suy ra tam giác đó phải có một cạnh song song với BD.

- Có 6 cách chọn cạnh song song với BD là

- Giả sử ta chọn cạnh  M 2 N 2  là cạnh của tam giác. Cần chọn đỉnh thứ 3 của tam giác trong 16 điểm còn lại. 

Do  M 2 N 2 ⊂ (ABD) mà mặt phẳng chứa tam giác song song với BD nên đỉnh thứ 3 không thể là 7 điểm còn lại nằm trong mp(ABD).

Do mặt phẳng chứa tam giác chỉ song song với BD nên đỉnh thứ 3 không được trùng với một trong ba điểm E 2 ,   F 2 ,   P 2 . Vậy đỉnh thứ 3 chỉ được chọn trong 16 -7 - 3 = 6 điểm còn lại.

Suy ra có 6 tam giác có 1 cạnh là  M 2 N 2 và mặt phẳng chứa nó chỉ song song với BD.

Vậy số tam giác mà mặt phẳng chứa nó chỉ song song với cạnh BD là: 6.6 = 36.

Tương tự cho các trường hợp khác, ta có số tam giác mà mặt phẳng chứa nó chỉ song song với đúng một cạnh của tứ diện ABCD là: 36.6 = 216.

Vậy xác suất cần tìm là 

Cách 2: Lưu Thêm

+) Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu.

Chọn ra 3 điểm trong 18 điểm trên: có  C 18 3  cách. 

Trong số  C 18 3  đó, có 6 cách chọn ra 3 điểm thẳng hàng trên các cạnh.

Suy ra n(S) =  C 18 3 - 6 = 810

+) Xét phép thử: “Lấy ngẫu nhiên một phần thử thuộc S”. Ta có

+) Gọi T là biến cố: “Mặt phẳng chứa tam giác được chọn song song với đúng một cạnh của tứ diện đã cho”.

Chọn một cạnh của tứ diện: 6 cách, (giả sử chọn AB).

Chọn đường thẳng song song với AB: 6 cách, (giả sử chọn PQ).

Chọn đỉnh thứ 3: 6 cách, (M, N, E, K, F, I).

Suy ra n(T) = 6.6.6 = 216

Vậy 

Nguyễn Thị Phương Linh
Xem chi tiết
Vũ Tùng Linh
23 tháng 9 2021 lúc 18:47

/????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
18 tháng 9 2023 lúc 19:57

a)      O có là trung điểm của đoạn thẳng AB

b)      Dùng thước đo góc ta thấy d có vuông góc với AB.

Lê Mỹ Kỳ
Xem chi tiết