Cho tứ giác nội tiếp ABCD có hai tia CD và BA cắt nhau tại I. Chứng minh:
a)\(\widehat {IAD} = \widehat {BCD}.\)
b) IA.IB = ID.IC.
Cho tứ giác ABCD, biết 2 đường thẳng AB và CD cắt nhau tại E, hai đường thẳng BC và AD cắt nhau ở F. Các phân giác của ˆEE^và ˆFF^ cắt nhau ở I. Chứng minh:
a, \(\widehat{EIF}=\dfrac{\widehat{ABC}+\widehat{ADC}}{2}\)
b, Nếu \(\widehat{BAD}=130\)độ và \(\widehat{BCD}=50\) độ thì IE vuông góc với IF.
Có hình vẽ các bạn nhé!
Cho tứ giác ABCD, biết 2 đường thẳng AB và CD cắt nhau tại E, hai đường thẳng BC và AD cắt nhau ở F. Các phân giác của \(\widehat{E}\)và \(\widehat{F}\) cắt nhau ở I. Chứng minh:
a, \(\widehat{EIF}=\dfrac{\widehat{ABC}+\widehat{ADC}}{2}\)
b, Nếu \(\widehat{BAD}=130\)độ và \(\widehat{BCD}=50\) độ thì IE vuông góc với IF.
Có hình vẽ các bạn nhé!
1, Cho tứ giác ABCD có \(\widehat{B}\)+ \(\widehat{D}\) =180 độ ,AC là tia phân giác của góc A.Chứng minh CB=CD.
2, Cho tứ giác ABCD có \(\widehat{A}\) = a , \(\widehat{C}\) = b .Hai đường thẳng AD và BC cắt nhau tại E, hai đường thẳng AB và DC cắt nhau tại F.Các tia phân giác của hai góc AEB và AFD cắt nhau tại I.Tính góc \(\widehat{EIF}\) theo a,b
Cho tứ giác ABCD nội tiếp (O;R) sao cho tia BA và CD cắt nhau tại I, tia DA và CB cắt nhau tại K (I,K) nằm ngoài (O) .Phân giác của góc BIC cắt AD,BC lần lượt tại Q,N. Phân giác của góc AKB cắt AB, CD lần lượt tại M,P
a) Chứng minh tứ giác MNPQ là hình thoi
b) Gọi giao điểm 2 đường chéo của MNPQ là G. Chứng minh tam giác IGC đồng dạng tam giác IDG và IK2 = ID.IC + KB.KC
c) Gọi F là trung điểm AB, J là hình chiếu của F trên OB. L là trung điểm của FJ chứng minh AL vuông góc OL
Cho tứ giác ABCD nội tiếp đường tròn (O) có AB = BD. Các đường thẳng AB và DC cắt nhau tại N, đường thẳng CB cắt tiếp tuyến tại A của đường tròn (O) tại M. Chứng minh \(\widehat{AMN}=\widehat{ABD}\)
*Chứng minh AMNC là tứ giác nội tiếp.
Ta có AB=BD nên △ABD cân tại B.
\(\Rightarrow\widehat{ADB}=\widehat{BAD}\left(1\right)\)
Trong (O) có: \(\widehat{MAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AB.
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB.
\(\Rightarrow\widehat{MAB}=\widehat{ADB}\left(2\right)\)
Tứ giác ABCD nội tiếp có \(\widehat{BCN}\) là góc ngoài ở đỉnh C.
\(\Rightarrow\widehat{BCN}=\widehat{BAD}\left(3\right)\)
(1), (2), (3) \(\Rightarrow\widehat{MAB}=\widehat{BCN}\).
\(\Rightarrow\)AMNC nội tiếp.
*Chứng minh yêu cầu đề bài.
AMNC nội tiếp \(\Rightarrow\widehat{AMN}=\widehat{ACD}\) (\(\widehat{ACD}\) là góc ngoài ở đỉnh C).
Mà \(\widehat{ACD}=\widehat{ABD}\) (ABCD nội tiếp)
\(\Rightarrow\widehat{AMN}=\widehat{ABD}\) (đpcm)
Cho tứ giác ABCD, biết 2 đường thẳng AB và CD cắt nhau tại E, hai đường thẳng BC và AD cắt nhau ở F. Các phân giác của \(\widehat{E}\) và \(\widehat{F}\) cắt nhau ở I. Chứng minh:
a, \(\widehat{EIF}=\frac{\widehat{ABC}+\widehat{ADC}}{2}\)
b, Nếu \(\widehat{BAD}=130\)độ và \(\widehat{BCD}\)=50 độ thì IE vuông góc với IF.
Có hình vẽ các bạn nhé!
Cho tứ giác ABCD, biết 2 đường thẳng AB và CD cắt nhau tại E, hai đường thẳng BC và AD cắt nhau ở F. Các phân giác của \(\widehat{E}\) và \(\widehat{F}\) cắt nhau ở I. Chứng minh:
a, \(\widehat{EIF}=\frac{\widehat{ABC}+\widehat{ADC}}{2}\)
b, Nếu \(\widehat{BAD}=130\)độ và \(\widehat{BCD}\)=50 độ thì IE vuông góc với IF.
Có hình vẽ các bạn nhé!
Tam giác ABC có ba đường phân giác cắt nhau tại I. Chứng minh:
a) \(\widehat {IAB} + \widehat {IBC} + \widehat {ICA} = 90^\circ \);
b) \(\widehat {BIC} = 90^\circ + \dfrac{1}{2}\widehat {BAC}\).
a) I là giao điểm của ba đường phân giác tại ba góc A, B, C nên:
\(\widehat {IAB} = \widehat {IAC};\widehat {IBA} = \widehat {IBC};\widehat {ICB} = \widehat {ICA}\).
Tổng ba góc trong một tam giác bằng 180° nên:
\(\begin{array}{l}\widehat {BAC} + \widehat {ACB} + \widehat {CBA} = 180^\circ \\\widehat {IAB} + \widehat {IAC} + \widehat {IBA} + \widehat {IBC} + \widehat {ICB} + \widehat {ICA} = 180^\circ \\2\widehat {IAB} + 2\widehat {IBC} + 2\widehat {ICA} = 180^\circ \end{array}\)
Vậy \(\widehat {IAB} + \widehat {IBC} + \widehat {ICA} = 90^\circ \).
b) Tổng ba góc trong một tam giác bằng 180°. Xét tam giác BIC:
\(\begin{array}{l}\widehat {BIC} + \widehat {IBC} + \widehat {ICB} = 180^\circ \\\widehat {BIC} = 180^\circ - (\widehat {IBC} + \widehat {ICB})\end{array}\).
Mà \(\widehat {IAB} + \widehat {IBC} + \widehat {ICA} = 90^\circ \)→ \(\widehat {IBC} + \widehat {ICA} = 90^\circ - \widehat {IAB}\).
Vậy: \(\begin{array}{l}\widehat {BIC} = 180^\circ - (\widehat {IBC} + \widehat {ICB})\\\widehat {BIC} = 180^\circ - (90^\circ - \widehat {IAB})\\\widehat {BIC} = 90^\circ + \widehat {IAB}\end{array}\)
Mà \(\widehat {IAB} = \dfrac{1}{2}\widehat {BAC}\)(IA là phân giác của góc BAC).
Vậy \(\widehat {BIC} = 90^\circ + \widehat {IAB} = 90^\circ + \dfrac{1}{2}\widehat {BAC}\).
cho tứ giác ABCD nội tiếp đường tròn tâm O. biết phân giác trong của \(\widehat{BAD}\) và \(\widehat{ABC}\) cắt nhau tại E trên cạnh CD.
1. CM: AD+BC=CD
2. cho \(\dfrac{CD}{CB}=k\) (k>1). tính tỉ số diện tích ΔADE và ΔBCE
Cho tứ giác ABCD, các tia phân giác của A và B cắt nhau tại I. Chứng minh \(\widehat{AIB}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)