Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Long Lê Xuân
Xem chi tiết
Hương Nguyễn
Xem chi tiết
Vũ Lan Anh
Xem chi tiết
Nguyễn Đức Trí
25 tháng 8 2023 lúc 18:08

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

Dương Kim Nam
22 tháng 3 2020 lúc 21:11

ko hỉu gianroi

Khách vãng lai đã xóa
Huỳnh Thị Thùy Trang
Xem chi tiết
Dương Chí Việt
Xem chi tiết

\(7\sqrt{x}=42\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)

\(\sqrt{x}>5\Leftrightarrow x>25\)

\(\sqrt{x}< 3=x< 9\)

\(3\sqrt{x}>25\Leftrightarrow\sqrt{x}>\frac{25}{3}\Leftrightarrow x>\frac{625}{9}\)

Khách vãng lai đã xóa
Thuy Chu
Xem chi tiết
meme
19 tháng 8 2023 lúc 20:20

1) Rút gọn biểu thức M: M = (2√x)/(√x - 3) - (x + 9√x)/(x - 9) = (2√x(x - 9) - (x + 9√x)(√x - 3))/(√x - 3)(x - 9) = (2x√x - 18√x - x√x + 9x + 9x - 27√x - 9√x + 27 )/(√x - 3)(x - 9) = (2x√x - 36√x + 27x)/(√x - 3)(x - 9) = (x(2√x - 36) + 27x) /(√x - 3)(x - 9) = (x(2√x - 36 + 27))/(√x - 3)(x - 9) = (x(2√x - 9))/( √x - 3)(x - 9) Do đó biểu thức M Rút gọn là: M = (x(2√x - 9))/(√x - 3)(x - 9) 2) Tìm các giá trị của x ă mãn M/N.(căn x + 3) = 3x - 5: Ta có phương trình: M/N.(căn x + 3) = 3x - 5 Đặt căn x + 3 = t, t >= 0, ta có x = t^2 - 3 Thay x = t^2 - 3 vào biểu thức M/N, ta có: M/N = [(t^2 - 3)(2√(t^2 - 3) - 9)]/[(t^2 - 3 + 5)t] = [(2(t^2 - 3) √(t^2 - 3) - 9(t^2 - 3))]/(t^3 + 2t - 3t - 6) = [2(t^2 - 3)√(t^2 - 3) - 9(t^2 - 3)]/(t(t - 1)(t + 2)) Đặt u = t^2 - 3, ta có: M/N = [2u√u - 9u]/((u + 3)(u + 2)) = [u(2√u - 9)]/((u + 3)(u + 2)) Đặt v = √u, ta có: M/N = [(v^ 2 + 3)(2v - 9)]/[((v^2 + 3)^2 - 3)(v^2 + 2)] = [(2v^3 - 18v + 6v - 54)]/[ ( (v^4 + 6v^2 + 9) - 3)(v^2 + 2)] = (2v^3 - 12v - 54)/(v^4 + 6v^2 + 6v^2 - 9v^2 + 18) = (2v^3 - 12v - 54)/(v^4 + 12v^2 + 18) Ta cần tìm các giá trị của v đối xứng phương trình M/N = 3x - 5: (2v^3 - 12v - 54)/(v^4 + 12v^2 + 18) = 3(t^2 - 3) - 5 (2v ^3 - 12v - 54)/(v^4 + 12v^2 + 18) = 3t^ 2 - 14 (2v^3 - 12v - 54) = (v^4 + 12v^2 + 18)(3t^2 - 14) Tuy nhiên, từ t = √(t^2 - 3), ta có v = √u = √(t^2 - 3) => (2(v^2)^3 - 12(v^2) - 54) = ((v^2)^4 + 12(v^2)^2 + 18) (3(v^2 - 3) - 14) => 2v^

Anh
Xem chi tiết
Huỳnh Thị Thùy Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 5 2022 lúc 10:48

a: \(B=\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}\)

\(=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{x-25}=\dfrac{1}{\sqrt{x}-5}\)

b: A=B|x-4|

\(\Leftrightarrow\left|x-4\right|=\dfrac{A}{B}=\sqrt{x}+2\)

\(\Leftrightarrow x-4=\sqrt{x}+2\)

=>x=9

Anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
31 tháng 5 2016 lúc 10:44

a)Ta có :  \(\sqrt{x}=x\left(DK:x\ge0\right)\)

\(\Leftrightarrow x=x^2\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Rightarrow x=0\)(nhận ) hoặc \(x=1\)(Nhận)

Vậy tập nghiệm của phương trình là : \(S=\left\{0;1\right\}\)

b) \(\sqrt{x^2+x+1}=x+2\left(DK:x\ge-2\right)\)

\(\Leftrightarrow x^2+x+1=\left(x+2\right)^2\)\(\Leftrightarrow x^2+x+1=x^2+4x+4\Leftrightarrow3x=-3\Leftrightarrow x=-1\)( Nhận)

Vậy tập nghiệm của phương trình là : \(S=\left\{-1\right\}\)

c) \(\sqrt{x^2-10x+25}=x-3\left(DK:x\ge3\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-3\Leftrightarrow\left|x-5\right|=x-3\)(1)

Đến đây ta xét hai trường hợp : 

1. Với  \(3\le x< 5\)phương trình (1) tương đương với : 

\(5-x=x-3\Leftrightarrow2x=8\Leftrightarrow x=4\)(Nhận)

2.  Với \(x\ge5\)phương trình (1) tương đương với : 

\(x-5=x-3\Rightarrow-5=-3\)( vô lí )

Vậy tập nghiệm của phương trình là : \(S=\left\{4\right\}\)

c) \(\sqrt{x-2}+\sqrt{2-x}=0\)

Ta có điều kiện xác định của phương trình là : \(\hept{\begin{cases}x-2\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le2\end{cases}\Rightarrow}x=2}\)

Thử lại với x = 2 ta thấy thoả mãn nghiệm của phương trình.

Vậy tập nghiệm của phương trình là : \(S=\left\{2\right\}\)