chho M=\(\sqrt{1}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{144}}\) ko là số tự nhiên
a. C/m : \(\sqrt{n+1}-\sqrt{n}>\frac{1}{2\sqrt{n}+1}\)
b. C/m : \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2005}}< 2.\sqrt{2005}\) với n là số tự nhiên
.
Rút gọn dãy tính, với n là số tự nhiên lớn hơn 1:
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
Xét hạng tổng quát:
\(\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{1}{\sqrt{n}+\sqrt{n-1}}=\frac{\sqrt{n}-\sqrt{n-1}}{n-n+1}=\sqrt{n}-\sqrt{n-1}\)
Áp dụng vào bài, ta có:
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
\(=\left(\sqrt{2}-1\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{n}-\sqrt{n-1}\right)\)
\(=\sqrt{n}-1\)
$\frac{1}{2\sqrt[3]{1}}$+$\frac{1}{3\sqrt[3]{2}}$+...+$\frac{1}{(n+1)\sqrt[3]{n}}$<3
Với n là số tự nhiên khác 0
Cho n là số tự nhiên lớn hơn 1
CMR: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{n}}\)
Cho n là số tự nhiên lớn hơn 1 CMR
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\sqrt{n}\)
Cho n là số tự nhiên lớn hơn 1
CMR \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>\sqrt{n}\)
Với n = 2 thì \(\frac{1}{1}+\frac{1}{\sqrt{2}}>\sqrt{2}\)
Giả sử bất đẳng thức đúng đến n = k
=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{K}}>\sqrt{K}\)
Ta chứng minh bất đẳng thức đúng với n = k+1
Ta có \(\frac{1}{\sqrt{1}}+...+\frac{1}{\sqrt{K}}+\frac{1}{\sqrt{K+1}}>\sqrt{K}+\frac{1}{\sqrt{K+1}}\)
= \(\frac{1+\sqrt{K^2+K}}{\sqrt{K+1}}\)
Mà ta lại có
\(\frac{1+\sqrt{K^2+K}}{\sqrt{K+1}}-\sqrt{K+1}\)
= \(\frac{\sqrt{K^2+K}-K}{\sqrt{K+1}}>0\)
Vậy bất đẳng thức đúng với n = k + 1
=> Điều phải chứng minh
Ta có \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{n}};...\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}.n=\sqrt{n}\)
Cho n là số tự nhiên lớn hơn 1
CMR \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>\sqrt{n}\)
\(A=\left(\frac{3x+\sqrt{9x}-3}{x-\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}-2}\right):\frac{1}{x-1}\) Với x >=0,x khác 1
a) Rút gọn A
b) Tìm số tự nhiên x đề 1/A là số tự nhiên
\(dk:x\ne\left\{1,\sqrt{2},4\right\};x\ge0\)dat \(\sqrt{x}=t\)
\(A=\left(\frac{3t^2}{t^2-t-2}+\frac{1}{t-1}+\frac{1}{t-2}\right)\left(t^2-1\right)==\left(\frac{3t^2}{\left(t-2\right)\left(t-1\right)}+\frac{1}{t-1}+\frac{1}{t-2}\right)\left(t^2-1\right)\)
\(=\left(\frac{3t^2}{\left(t-2\right)\left(t-1\right)}+\frac{t-2}{t-1}+\frac{t-1}{t-2}\right)\left(t-1\right)\left(t+1\right)=3t^2+2t-3\)
\(A=3x+2\sqrt{x}-3\)
b
\(\frac{1}{A}=\frac{1}{3x+2\sqrt{x}-3}\Rightarrow\orbr{\begin{cases}3x+2\sqrt{x}-3=-1\\3x+2\sqrt{x}-3=1\end{cases}}\)tư làm tiếp
\(A=\left(\frac{3x+3\sqrt{x}-3}{x-\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}-2}\right):\frac{1}{x-1}\)
\(=\left(\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}-2}\right):\frac{1}{x-1}\)
\(=\frac{3x\sqrt{x}-6\sqrt{x}+1+x-\sqrt{x}-2+x-1}{\left(\sqrt{x}-2\right)\left(x-1\right)}:\frac{1}{x-1}\)
\(=\frac{3x\sqrt{x}+2x-7\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(x-1\right)}:\frac{1}{x-1}\)
\(=\frac{3x\sqrt{x}+2x-7\sqrt{x}-2}{\sqrt{x}-2}\)
b/ \(\frac{1}{A}=\frac{3x\sqrt{x}+2x-7\sqrt{x}-2}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{3x\sqrt{x}+2x-7\sqrt{x}-2}\)
Tìm dược x = 4 đó
Cho \(S=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)
CMR: S không là số tự nhiên