Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Simple
Xem chi tiết
Simple
19 tháng 7 2021 lúc 13:41

pls help.

 

EZblyat
Xem chi tiết
An Thy
19 tháng 7 2021 lúc 16:54

Kẻ \(BE\bot IK,CF\bot IK\)

Vì AK,AI là tiếp tuyến \(\Rightarrow\Delta AKI\) cân tại A \(\Rightarrow\angle AKI=\angle AIK\)

\(\Rightarrow\angle BKE=\angle CIF\)

Xét \(\Delta BEK\) và \(\Delta CFI:\) Ta có: \(\left\{{}\begin{matrix}\angle BKE=\angle CIF\\\angle BEK=\angle CFI=90\end{matrix}\right.\)

\(\Rightarrow\Delta BEK\sim\Delta CFI\left(g-g\right)\Rightarrow\dfrac{BE}{CF}=\dfrac{BK}{CI}\)

Vì BK,BH là tiếp tuyến \(\Rightarrow BH=BK\)

Vì CI,CH là tiếp tuyến \(\Rightarrow CI=CH\)

\(\Rightarrow\dfrac{BK}{CI}=\dfrac{BH}{CH}\Rightarrow\dfrac{BE}{CF}=\dfrac{BH}{CH}\)

Vì \(BE\parallel HD\parallel CF(\bot IK)\) \(\Rightarrow\dfrac{BH}{CH}=\dfrac{ED}{DF}\Rightarrow\dfrac{BE}{CF}=\dfrac{ED}{DF}\)

Xét \(\Delta BED\) và \(\Delta CFD:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{BE}{CF}=\dfrac{DE}{DF}\\\angle BED=\angle CFD=90\end{matrix}\right.\)

\(\Rightarrow\Delta BED\sim\Delta CFD\left(c-g-c\right)\Rightarrow\angle BDE=\angle CDF\)

mà \(\angle AKI=\angle AIK\Rightarrow\angle AKI-\angle BDE=\angle AIK-\angle CDF\)

\(\Rightarrow\angle ABD=\angle ACD\)

undefined

EZblyat
Xem chi tiết
mystic and ma kết
19 tháng 7 2021 lúc 16:27

(O) tiếp xúc với BC, CA, AB tại H, I, K \Rightarrow OK vuông với KB ở K.

Mà HD vuông với KD ở D.

 

∠KBD=∠OKD∠KBD=∠OKD Hay ∠ABD=∠OKI∠ABD=∠OKI

Tương tự có ∠ACD=∠OIK∠ACD=∠OIK

(O) có ΔΔOIK cân ở O \Rightarrow ∠OKI=∠OIK

đó bạn nhé nhớ k nhe

Khách vãng lai đã xóa
EZblyat
19 tháng 7 2021 lúc 16:39

bạn viết lại giùm mình đc ko, chứ mình ko thấy gì hết.

Khách vãng lai đã xóa
dang khoi nguyen cuu
Xem chi tiết
Võ Bình Minh
Xem chi tiết
Đỗ Xuân Long
21 tháng 2 2016 lúc 19:21

A B C A' B' C' I D

\(\overrightarrow{ID}.\overrightarrow{AA'}=\overrightarrow{ID}\left(\overrightarrow{IA'}-\overrightarrow{IA}\right)=\overrightarrow{ID}.\overrightarrow{IA'}-\overrightarrow{ID}.\overrightarrow{IA}=IA'^2-\overrightarrow{ID}.\overrightarrow{IA}\)

              \(=IA'^2-\left(\overrightarrow{IC'}+\overrightarrow{C'D}\right)\overrightarrow{IA}=IA'^2-\overrightarrow{IC'}.\overrightarrow{IA'}-\overrightarrow{C'D}.\overrightarrow{IA}=IA'^2-IC'^2-0\) (vì AI vuông góc với C'B')

             \(=r^2-r^2=0\) (r là bán kính đường tròn nội tiếp tam giác ABC)

ĐFCM

Van Nguyen
Xem chi tiết
phucduong
Xem chi tiết
Ngô Quang Sáng
Xem chi tiết
Agatsuma Zenitsu
23 tháng 1 2020 lúc 21:16

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

Khách vãng lai đã xóa
Ngô Quang Sáng
24 tháng 1 2020 lúc 10:11

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy

Khách vãng lai đã xóa
Agatsuma Zenitsu
24 tháng 1 2020 lúc 10:23

Đúng rồi bạn. Phụ nhau ý nghĩa là ^HBD + ^ACB = 90^0 và tương tự như góc kia. (Tam giác vuông ý)

Khách vãng lai đã xóa
Nguyễn Minh Trâm
Xem chi tiết