a) So sánh: sin 72o và cos 18o ; cos 72o và sin 18o; tan 72o và cot 18o
b) Cho biết sin 18o \( \approx 0,31\) ; tan 18o \( \approx 0,32\). Tính cos 72o và cot 72o.
a/ so sánh sin 25 độ và cos 70 độ b/ tính sin 50 độ / cos 40 độ
a: \(cos70=sin20\)
20<25
=>\(sin20< sin25\)
=>\(cos70< sin25\)
b: \(\dfrac{sin50}{cos40}=\dfrac{cos\left(90-50\right)}{cos40}=\dfrac{cos40}{cos40}=1\)
a) Ta có:
\(cos70^o=sin\left(90^o-70^o\right)=sin20^o\)
Ta so sánh \(sin25^o\) và \(sin20^o\)
\(25^o>20^o\Rightarrow sin25^o>sin20^o\)
\(\Rightarrow sin25^o>cos70^o\)
b) \(\dfrac{sin50^o}{cos40^o}\)
Ta có:
\(cos40^o=sin\left(90^o-40^o\right)=sin50^o\)
\(\Rightarrow\dfrac{sin50^o}{cos40^o}=\dfrac{sin50^o}{sin50^o}=1\)
Không dùng bảng số và máy tính, hãy so sánh:
a, sin 40 0 và sin 70 0
b, cos 80 0 và cos 50 0
c, sin 25 0 và tan 25 0
d, cos 35 0 và cot 35 0
Tương tự câu 1
Chú ý các tỉ số lượng giác sin và cos có giá trị trong khoảng (0;1)
So sánh:
a ) sin 20 ° v à sin 70 ° b ) cos 25 ° v à cos 63 ° 15 ' c ) tg 73 ° 20 ' v à tg 45 ° d ) cotg 2 ° v à cotg 37 ° 40 '
a) Vì 20 ° < 70 ° n ê n sin 20 ° < sin 70 ° (góc tăng, sin tăng)
b) Vì 25 ° < 63 ° 15 ' n ê n cos 25 ° > cos 63 ° 15 ' (góc tăng, cos giảm)
c) Vì 73 ° 20 ' > 45 ° n ê n t g 73 ° 20 ' > t g 45 ° (góc tăng, tg tăng)
d) Vì 2 ° < 37 ° 40 ' n ê n c o t g 2 ° > c o t g 37 ° 40 ' (góc tăng, cotg giảm )
Cho tam giác ABC vuông tại A, BC = 2AC. So sánh sin B; cos B, khẳng định nào sau đây đúng?
a, sin B < cos B
b, sin B > cos B
c, sin B ≥ cos B
d, sin B = cos B
Không dùng bảng số và máy tính hãy so sánh:
a, sin 20 0 và sin 70 0
b, cos 60 0 và cos 70 0
c, tan 73 0 20 ' và tan 45 0
d, cot 20 0 và cot 37 0 40 '
a, sin 20 0 < sin 70 0
b, cos 60 0 > cos 70 0
c, tan 73 0 20 ' > tan 45 0
d, cot 20 0 > cot 37 0 40 '
Giá trị của biểu thức
A = c o t 44 o + tan 226 o . cos 406 o cos 316 o - c o t 72 o . c o t 18 o
bằng
A. -1
B. 1
C. 0
D. 2
Không dùng bảng số và máy tính, so sánh
1, sin 30 và sin 69
b, cos 81 và cos 40
so sánh sin 45 và cos 60
cos\(60^0\)=sin(\(90^0-60^0\))=sin300cos600=sin(900−600)=sin300
Vì 300<450⇒sin300<sin450
⇒sin450>cos60
Toán hình lớp 9: Luyện tập
25/ So sánh:
a/ tan 25 và sin 25
b/ cot 32 và cos 32
c/ tan 45 và cos 45
d/ cot 60 và sin 30
So sánh các TSLG theo thứ tự tăng dần.
a. sin 18 độ, cos 32 độ, sin 44 độ, cos 53 độ, cos 8 độ.
b. tan 20 độ, sin 20 độ. cot 8 độ, tan 40 độ, cot 37 độ.
a: \(cos32=sin58;cos53=sin37;cos8=sin82\)
18<37<44<58<82
=>\(sin18< sin37< sin44< sin58< sin82\)
=>\(sin18< cos53< sin44< cos32< cos8\)
b: 20<45
=>\(sin20< tan20\)
\(cot8=tan82;cot37=tan53\)
20<40<53<82
=>\(tan20< tan40< tan53< tan82\)
=>\(tan20< tan40< cot37< cot8\)
=>\(sin20< tan20< tan40< cot37< cot8\)