CMR nếu(mn+pq) chia hết cho (m-p) thì (mq+np) chia het cho (m-p) với m,n,p,q thuộc N
CMR: Nếu m-n chia hết cho mp+nq thì m-n chia hết cho mq+np
Cho hình thang MNPQ , ( MN // PQ ) , MN =m , PQ=n ,qua giao điểm I của 2 đường chéo . Kẻ đường thẳng // với MN cắt MQ , NP theo thứ tự ở H và K . CMR : 1/IH = 1/IK =1/m+1/n
Cho M,N,P,Q
C/m nếu :
a) \(\overrightarrow{MN}=\overrightarrow{PQ}\)thì \(\overrightarrow{MP}=\overrightarrow{NQ}\)
b) \(\overrightarrow{NP}+\overrightarrow{MN}=\overrightarrow{QP}+\overrightarrow{MQ}\)
c) \(\overrightarrow{MN}+\overrightarrow{PQ}=\overrightarrow{MQ}+\overrightarrow{PN}\)
Cho hình thang MNPQ , ( MN // PQ ) , MN =m , PQ=n ,qua giao điểm I của 2 đường chéo . Kẻ đường thẳng // với MN cắt MQ , NP theo thứ tự ở H và K . CMR : 1/IH +1/IK =1/m+1/n
Cho 2 đoạn thẳng MN và PQ cắt nhau tại O. Nối M với P ,N với Q
a, Tính tổng các góc MPN,MQN,PMQ,PNQ\
b, So sánh MN+PQ voi MQ+NP,MP+NQ
MN+PQvoi MP+NQ+MQ+NP
`Cho tam giác ABC , trên nửa mặt phẳng bờ AC không chứa B , lấy điểm D bất kì trên AC . Gọi M, N, P, Q lần lượt là trung điểm cạnh AB, BC, AD, CD. CMR:
1 MN// PQ và MQ// PN
2 MN+ NP+ PQ+ MQ= AC+ BD
Cho tứ giác ABCD có M;N;P;Q lần lượt là trung điểm của các cạnh AB;AC;CD;BD. .Chứng minh rằng : MN//PQ,NP//MQ;MN=PQ,NP=MQ(giúp mình nha tks mb)
Gọi O là giao điểm hai đường chéo, MQ cắt AC ở H và MN cắt BD ở I. Ta có H và I là trung điểm OA và OB ta có:
Dien h AOM = BOM = ½ AOB
Dien h OHM = HAM = ½ AOM
Dien h OMI = BMI = ½ OMB
=> Dien h OHMI = ½ OAB
Tuong tu các cặp tam giác khác rồi cộng lại
Cho tam giác PQR nhọn PQ < PR lấy M thuộc cạnh PQ, N thuộc cạnh PR sao cho MN//QR
cho biết PQ=8cm MQ=6cm NP=3cm
p/s EM ĐANG GẤP NHA MN
CMR: Nếu m2+n2 chia hết cho 3 thì m chia hết cho 3 và n chia hết cho 3 (m, n thuộc Z)
Do m2; n2 là số chính phương nên m2; n2 chia 3 chỉ có thể dư 0 hoặc 1
+ Nếu m2; n2 chia 3 cùng dư 1 thì m2 + n2 chia 3 dư 2 (trái với đề bài)
+ Nếu trong 2 số m2; n2 có 1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2 + n2 chia 3 dư 1 (trái với đề bài)
=> m2; n2 cùng chia hết cho 3
Mà 3 là số nguyên tố => m chia hết cho 3; n chia hết cho 3 (đpcm)
Do m2;n2 là số chính phương nên m2;n2 chia hết cho 3 chỉ có thể dư 0 hoặc 1.
+ Nếu m2;n2 chia 3 cùng dư 1 thì m2+n2 chia 3 dư 2 (trái với đề bài có - vô lí)
+ Nếu trong 2 xố m2; n2 có 1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2+n2 chia 3 dư 1 (trái đề bài- vô lí)
=> m2;n2 cùng chia hết cho 3
Mà 3 là số nguyên tố=> m chia hết cho 3; n chia hết cho 3 (điều phải chứng minh)
#Đạt: cái óc sinh ra để lm j, sao ko tự lm mà ik copy bài ng` khác