Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Nam Duy
Xem chi tiết
Anh Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 1:10

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

Ngọc Hân Cao Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 11 2023 lúc 21:40

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

Quách Quỳnh Bảo Ngọc
Xem chi tiết
vô tâm nhók
1 tháng 5 2017 lúc 21:22

a) A =1+3+32+33+...+3100

   3A = 3 + 32+33+...+3101

   3A-A=( 3 + 32+33+...+3101)-(1+3+32+33+...+3100)

    2A = 3101-1

    A = \(\frac{3^{101}-1}{2}\)

    Thùy An làm sai rùi

Thuỳ An
2 tháng 8 2016 lúc 15:54

a) A=1+3+3^2+...+3^100

3A=3+3^2+....+3^101

3A-A=1+3^101

A=(1+3^101)/2

Hoàng hôn  ( Cool Team )
2 tháng 10 2019 lúc 21:36

  a) A=1+3+32+...+3100

    3A=    3+32+...+3100+3101

3A-A=3101-1

   2A=3101-1

     A=(3101-1):2

Do minh linh trang
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Thị Thủy Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2023 lúc 9:22

Bài 3:

a: a*S=a^2+a^3+...+a^2023

=>(a-1)*S=a^2023-a

=>\(S=\dfrac{a^{2023}-a}{a-1}\)

b: a*B=a^2-a^3+...-a^2023

=>(a+1)B=a-a^2023

=>\(B=\dfrac{a-a^{2023}}{a+1}\)

Đức Vũ Việt
Xem chi tiết
Đức Vũ Việt
Xem chi tiết
Ngô Văn Tuyên
9 tháng 10 2015 lúc 10:15

A=1+2+22+…+2100

2A=2(1+2+22+…+2100)

2A=2+22+…+2101

2A-A = A = 2+22+…+2101-(1+2+22+…+2100)

            A = 2+22+…+2101-1-2-22-…-2100

            A = (2-2)+(22-22)+…+(2100-2100)+2101-1

            A = 0+0+…+0+2101-1

            A = 2101-1

B=3-32+33-34+…+299-3100

3B = 3(3-32+33-34+…+299-3100)

3B = 32-33+34-…-299+3100-3101

3B+B = 4B = 3-32+33-34+…+299-3100

         4B =(3-32+33-34+…+299-3100)+(32-33+34-…-299+3100-3101)

         4B =3-32+33-34+…+299-3100+32-33+34-…-299+3100-3101

         4B =3+(32-32)+(33-33)+(34-34)+…+(299-299)+(3100-3100)-3101

        4B =3+0+0+0+....+0-3101

         4B =3-3101

           B = (3-3101)/4

Ngọc Hân Cao Dương
Xem chi tiết
Akai Haruma
29 tháng 11 2023 lúc 17:55

Lời giải:

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+....-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow 16A=12A+4A=3-\frac{101}{3^{99}}-\frac{100}{3^{100}}<3\)

\(\Rightarrow A< \frac{3}{16}\)