Những câu hỏi liên quan
Dương Thị Anh
Xem chi tiết
Bảo Trần
12 tháng 7 2023 lúc 10:24

gõ latex đi b=)

Bình luận (0)
HT.Phong (9A5)
12 tháng 7 2023 lúc 10:25

\(A=\sqrt{x}+1\) (đã thu gọn)

\(B=\dfrac{4\sqrt{x}}{x+4}\) (đã thu gọn)

\(A=x-\sqrt{x}+1=\sqrt{x}\cdot\sqrt{x}-\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}-1\right)+1\)

\(A=\dfrac{3}{2\sqrt{x}}\) (đã thu gọn)

\(A=\dfrac{3}{\sqrt{x}+3}\) (đã thu gọn)

\(A=1-\sqrt{x}\) (đã thu gọn)

\(A=x-2\sqrt{x}-1=\sqrt{x}\left(\sqrt{x}-2\right)-1\)

Bình luận (0)
Phan Bao
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 18:08

loading...  

Bình luận (0)
Tommiseomi
Xem chi tiết
loan lê
2 tháng 7 2023 lúc 18:37

`a)->` ĐKXĐ : `x>=0;x\ne1`

`b)` Ta có :

`P=(\sqrtx)/(\sqrtx-1)-(2\sqrtx)/(\sqrtx+1)+(x-3)/(x-1)`

`P=(\sqrtx(\sqrtx+1)-2\sqrtx(\sqrtx-1)+x-3)/(x-1)`

`P=(x+\sqrtx-2x+2\sqrtx+x-3)/(x-1)`

`P=(3\sqrtx-3)/(x-1)`

`P=(3(\sqrtx-1))/((\sqrtx-1)(\sqrtx+1))`

`P=3/(\sqrtx+1)`

Vậy `P=3/(\sqrtx+1)` khi `x>=0;x\ne1`

Bình luận (3)
⭐Hannie⭐
2 tháng 7 2023 lúc 18:41

\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{x-1}\\ =\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{x+\sqrt{x}-2x+2\sqrt{x}+x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\\)

\(=\dfrac{3}{\sqrt{x}+1}\)

Bổ sung \(\text{đ}k\text{x}\text{đ}:x\ge0;x\ne1\)

Bình luận (3)
Quynh Trinh
Xem chi tiết
Nguyễn Thị Quế Chi
Xem chi tiết
Nguyễn Huy Tú
15 tháng 6 2021 lúc 19:55

a, \(A=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)

\(=\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}\right):\left(\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)

\(=\frac{2}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1-\sqrt{x}+\sqrt{x}}{-x+\sqrt{x}}=\frac{1}{\sqrt{x}-x}\)

b, Ta có : \(x=7+4\sqrt{3}=7+2.2\sqrt{3}=\left(\sqrt{4}+\sqrt{3}\right)^2\)

\(A=\frac{1}{\sqrt{4}+\sqrt{3}-7+4\sqrt{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
Hà Thu Giang
Xem chi tiết
Trang Khúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 8 2023 lúc 14:52

a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}+x-\sqrt{x}-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b: Để A là số nguyên thì \(\sqrt{x}-1⋮\sqrt{x}+1\)

=>\(\sqrt{x}+1-2⋮\sqrt{x}+1\)

=>căn x+1 thuộc {1;2}

=>căn x thuộc {0;1}

mà x<>1

nên x=0

Bình luận (0)
Nguyễn Thị Quế Chi
Xem chi tiết
Khách vãng lai
Xem chi tiết
Yeutoanhoc
17 tháng 5 2021 lúc 13:39

`A=(1/(x-sqrtx)+1/(sqrtx-1)):(sqrtx+1)/(sqrtx-1)^2`

`=((sqrtx+1)/(x-sqrtx)).(sqrtx-1)^2/(sqrtx+1)`

`=(sqrtx-1)^2/(x-sqrtx)`

`=(sqrtx-1)/sqrtx`

Bình luận (0)