Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN NGỌC HÀ
Xem chi tiết
V BTS
Xem chi tiết
Hacker Ngui
Xem chi tiết
nguyễn thị ngọc trâm
14 tháng 8 2016 lúc 21:18

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

alibaba nguyễn
14 tháng 8 2016 lúc 21:37

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

nguyễn thị ngọc trâm
14 tháng 8 2016 lúc 21:42

Sao cậu k k cho tớ

Đức Phạm
Xem chi tiết
Đức Phạm
12 tháng 6 2017 lúc 6:47

a) Với mọi n là số lẻ hoặc số chẵn thì \(A=\left(n+6\right)\left(n+7\right)\) luôn luôn là số chẵn . Do đó \(A⋮2\)với mọi \(n\in Z\)

b) \(B=n\left(n+1\right)+3\)

Vì \(n\left(n+1\right)\)là tích của hai số nguyên liên tiếp nên là số chẵn , do đó \(n\left(n+1\right)⋮2\), nhưng 3 không chia hết cho 2 

\(\Rightarrow\)B không chia hết cho 2 với mọi \(n\in Z\)

Nguyễn Tiến Dũng
12 tháng 6 2017 lúc 6:47

Nếu n là số chẵn thì (n + 6) chia hết cho 2 

=> (n + 6)(n + 7) chia hết cho 2 

Nếu n là số lẻ thì (n + 7) chia hết cho 2 

=> (n + 6)(n + 7) chia hết cho 2 

Vậy với mọi n nguye thì (n + 6)(n + 7) đều chia hết cho 2 

Phạm Hồ Thanh Quang
12 tháng 6 2017 lúc 6:48

a) Do n + 6 và n + 7 là hai số nguyên liên tiếp nên 1 trong 2 số có một số chẵn => tích của chúng luôn chia hết cho 2
b) n2 + n + 3
= n(n + 1) + 3

n và n + 1 là 2 số liên tiếp nên tích của chúng luôn chia hết cho 2, mà 3 không chia hết cho 2, nên:
n2 + n + 3 không chia hết cho 2

Nguyễn Khắc Quang
Xem chi tiết
Greninja
6 tháng 3 2021 lúc 21:45

\(A=\left(2^n-1\right)\left(2^n+1\right)\)

\(=\left(2^n-1\right)\left(2+1\right)\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)\)

\(=\left(2^n-1\right)3\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)⋮3\forall n\in N\)

Vậy \(A⋮3\forall n\in N\)

Khách vãng lai đã xóa
Lương Đại
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 10 2021 lúc 15:53

\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)

Nguyễn Nguyên Vũ
22 tháng 10 2021 lúc 13:50

tui chiuj

Khách vãng lai đã xóa
Nguyễn Thị Kim Phương
Xem chi tiết
Trần Thanh Phương
30 tháng 9 2018 lúc 19:02

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)\)

\(=\left(n+1\right)n\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

vì tích của 3 số tự nhiên liên tiếp chia hết cho 6

Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)

êfe
Xem chi tiết
Đinh Đức Hùng
16 tháng 2 2018 lúc 17:39

Do 2013 là số lẻ nên \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\left(1+2+3+....+n\right)\)

Hay \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow2\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮n\left(n+1\right)\) (đpcm)

êfe
16 tháng 2 2018 lúc 17:45

Vì sao 2013 là số lẻ thì \(1^{2013}+2^{2013}+.....+n^{2013}⋮1+2+3+...+n\)

Bui Đưc Trong
16 tháng 2 2018 lúc 17:48

Vì 20113 là số lẻ nên : \(\left(1^{2013}+2^{2013}+...+n^{2013}\right)⋮\left(1+2+..+n\right)\)

\(\Rightarrow\left(1^{2013}+2^{2013}+...+n^{2013}\right)⋮\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow2\left(1^{2013}+2^{2013}+...+n^{2013}\right)⋮n\left(n+1\right)\)

Vậy ta có đpcm.

Jenner
Xem chi tiết
ILoveMath
24 tháng 1 2022 lúc 21:10

\(n\left(n^2-1\right)\left(n^2+6\right)\\=n\left(n-1\right)\left(n+1\right)\left(n^2-4+10\right) \\ =n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)\)

Vì n-2, n-1, n, n+1, n+2 là 5 số nguyên liến tiếp nên có ít nhất 1 số chia hết cho 2, 1 số chia hết 3, 1 số chia hết 5

Mà (2,3,5)=1\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2.3.5=30\)

Vì n-1, n, n+1 là 3 số nguyên liến tiếp nên có ít nhất 1 số chia hết 3

\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow10n\left(n-1\right)\left(n+1\right)⋮3.10=30\)

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)⋮30\)

Vậy ...