Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ẩn danh

Những câu hỏi liên quan
Yen Phuoq
Xem chi tiết
Trần Tuấn Hoàng
9 tháng 2 2023 lúc 14:16

a) \(\left(x+y+1\right)^3=x^3+y^3+7\)

\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)

\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.

Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).

- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)

Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).

- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).

Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).

Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)

 

 

Trần Tuấn Hoàng
9 tháng 2 2023 lúc 14:28

b) \(y^2+2xy-8x^2-5x=2\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)

\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)

\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)

\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)

\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)

\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.

Lập bảng:

6y-12x-5147-1-47
24x+6y+5471-47-1
x1\(\dfrac{-14}{9}\left(l\right)\)\(\dfrac{-14}{9}\left(l\right)\)1
y3\(\dfrac{50}{9}\left(l\right)\)\(-\dfrac{22}{9}\left(l\right)\)-5

Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)

 

Tú Trần
Xem chi tiết
GamingDudex
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2022 lúc 11:34

#include <bits/stdc++.h>

using namespace std;

long long a,b,k,x,y,dem=0;

int main()

{

cin>>a>>b>>k;

for (x=1; x<=k; x++)

{

for (y=1; y<=k; y++)

{

if (a<=x*x && a<=b && a<=y*y*y && a<=b) dem++;

}

}

cout<<dem;

return 0;

}

Mai Tiến Đỗ
Xem chi tiết
GamingDudex
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2022 lúc 19:10

uses crt;

var a,b,k,dem,x,y:longint;

begin

clrscr;

readln(a,b,k);

dem:=0;

for x:=1 to k do 

  for y:=1 to k do 

  if ((a<=b) and (a<=x*x) and (a<=y*y*y)) then dem:=dem+1;

writeln(dem);

readln;

end.

Hoàng Linh Chi
Xem chi tiết
Sakura
Xem chi tiết
rrrge
Xem chi tiết
Lê Tài Bảo Châu
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Trần Thanh Phương
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

cao nam anh
20 tháng 2 2021 lúc 17:33

LOADING...

Khách vãng lai đã xóa
vuthingoc
Xem chi tiết
vuthingoc
25 tháng 4 2015 lúc 9:47

Tu de bai suy ra 2y+2x=xy<=>...<=>y(2-x)= -2x<=>y=2x/(x-2)<=>y=(2x-4+4)/(x-2)<=>y=2+4/(x-2)

vi x la so nguyen Dưỡng nen x-2 la so nguyen  duong va la ước cua 4 => x-2 =1 hoặc x-2= 4 => x=3 hoac x=6 

Voi x=3 => y= 6

voi x=6=> y=3

vay cac cap so nguyen duong (x;y) can tim la (3;6); (6;3)

vuthingoc
26 tháng 4 2015 lúc 22:39

.....

Sau khi chi ra x-2 la uoc nguyen duong cua 4

 Co 3  Truong hop

x-2 =1; x-2=2;x-2=4

Tu do tinh duoc x=3;x=4;x=6. Suy ra cac gia tri tuong ung cua y

co 3 cap so nguyen duong x, y can Tim:(3;6);(4 ;4);(6;3)

Vương Tiến Đạt
Xem chi tiết
Phạm Thành Đông
15 tháng 3 2021 lúc 23:24

\(\left(x+y\right)^3=\left(x-y-6\right)^2\)

Vì \(x,y>0\Rightarrow\left(x+y\right)^3>\left(x+y\right)^2\)

Mà \(\left(x+y\right)^3=\left(x-y-6\right)^2\)

Nên \(\left(x-y-6\right)^2>\left(x+y\right)^2\)

\(\Leftrightarrow\left(x+y\right)^2-\left(x-y-6\right)^2< 0\) 

\(\Leftrightarrow\left(x+y+x-y-6\right)\left(x+y-x+y+6\right)< 0\)

\(\Leftrightarrow\left(2x-6\right)\left(2y+6\right)< 0\)

\(\Leftrightarrow4\left(x-3\right)\left(y+3\right)< 0\)

\(\Leftrightarrow\left(x-3\right)\left(y+3\right)< 0\)

Do đó \(x-3\)và \(y+3\)trái dấu với nhau.

Mà \(y>0\Rightarrow y+3>0\)

Do đó \(x-3< 0\Leftrightarrow x< 3\)

Mà \(x>0\)nên \(x\in\left\{1;2\right\}\)

Khách vãng lai đã xóa
Phạm Thành Đông
15 tháng 3 2021 lúc 23:30

Với \(x=1\)thì phương trinh trở thành:

\(\left(1+y\right)^3=\left(1-y-6\right)^2\)

\(\Leftrightarrow y^3+3y^2+3y+1=\left(-y-5\right)^2\)

\(\Leftrightarrow y^3+3y^2+3y+1=y^2+10y+25\)

\(\Leftrightarrow y^3+3y^2+3y+1-y^2-10y-25=0\)

\(\Leftrightarrow y^3+2y^2-7y-24=0\)

\(\Leftrightarrow\left(y^3-3y^2\right)+\left(5y^2-15y\right)+\left(8y-24\right)=0\)

\(\Leftrightarrow y^2\left(y-3\right)+5y\left(y-3\right)+8\left(y-3\right)=0\)

\(\Leftrightarrow\left(y^2+5y+8\right)\left(y-3\right)=0\)

Mà \(y>0\Rightarrow y^2+5y+8>0\), do đó:

\(y-3=0:\left(y^2+5y+8\right)\)

\(\Leftrightarrow y-3=0\)

\(\Leftrightarrow y=3\)(thỏa mãn \(y>0\))

Khách vãng lai đã xóa
Phạm Thành Đông
15 tháng 3 2021 lúc 23:37

Với \(x=2\), phương trình trở thành:

\(\left(2+y\right)^3=\left(2-y-6\right)^2\)(1)

\(\Leftrightarrow y^3+6y^2+12y+8=\left(-y-4\right)^2\)

\(\Leftrightarrow y^3+6y^2+12y+8=y^2+8y+16\)

\(\Leftrightarrow y^3+6y^2+12y+8-y^2-8y-16=0\)

\(\Leftrightarrow y^3+5y^2+4y-8=0\)

Vì \(y>0\left(y\in Z\right)\)nên \(y\ge1\)

Do đó\(y^3+5y^2+4y\ge1+5+4=10\)

\(\Rightarrow y^3+5y^2+4y-8\ge2>0\)

Do đó phương trình (1) vô nghiệm.

Vây phương trình có tập nghiệm (x;y) = (1;3)

(tin thứ 1 và 2 tớ ghi \(y>0\), nhớ viết thêm \(y\in Z\)sau mỗi \(y>0\)nhé).

Khách vãng lai đã xóa