a3+2a2-1
a3+2a2+2a+1
Cho biểu thức A = a3+2a2−1a3+2a2+2a+1a3+2a2−1a3+2a2+2a+1
a) Rút gọn biểu thức.
b) CMR nếu a nguyên thì A tối giản.
a, 2a2+2b2>a3+ab2 khi nào
b,2a2+2b2=a3+ab2 khi nào
c,2a2+2b2<a3+ab2 khi nào
d,2a2+2b2>hoặc =a3+ab2 khi nào
Xét hiệu \(2a^2+2b^2-\left(a^3+ab^2\right)=\left(2a^2-a^3\right)+\left(2b^2-ab^2\right)\)
\(=a^2\left(2-a\right)+b^2\left(2-a\right)\)
\(=\left(a^2+b^2\right)\left(2-a\right)\)
Do \(a^2+b^2\ge0;\forall a;b\) nên:
\(2a^2+2b^2>a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\2-a>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2\ne0\\a< 2\end{matrix}\right.\)
\(2a^2+2b^2=a^3+ab^2\) khi \(\left[{}\begin{matrix}a^2+b^2=0\\2-a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=0\\a=2\end{matrix}\right.\)
\(2a^2+2b^2< a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\a>2\end{matrix}\right.\) \(\Rightarrow a>2\)
\(2a^2+2b^2\ge a^3+ab^2\) khi \(2-a\ge0\Leftrightarrow a\le2\)
Cho a=\(\sqrt{5}\) - 1
a) Chứng minh a2 + 2a - 4 = 0
b) Tính giá trị biểu thức: (a3 + 2a2 - 4a + 2)10
a) Ta có: \(a^2+2a-4=0\)
\(\Leftrightarrow\left(\sqrt{5}-1\right)^2+2\left(\sqrt{5}-1\right)-4=0\)
\(\Leftrightarrow6-2\sqrt{5}+2\sqrt{5}-2-4=0\)
\(\Leftrightarrow0=0\)(đúng)
b) Ta có: \(\left(a^3+2a^4-4a+2\right)^{10}\)
\(=\left[a\left(a^2+2a-4\right)+2\right]^{10}\)
\(=2^{10}=1024\)
Thực hiện các phép tính sau:
a) x 6 + 2 x 3 + 3 x 3 − 1 . 3 x x + 1 . x 2 + x + 1 x 6 + 2 x 3 + 3 với x ≠ ± 1 ;
b) a 3 + 2 a 2 − a − 2 3 a + 15 . 1 a − 1 − 2 a + 1 + 1 a + 2 với a ≠ − 5 ; − 2 ; ± 1 .
a) Ta có x 6 + 2 x 3 + 3 x 3 − 1 . 3 x x + 1 . x 2 + x + 1 x 6 + 2 x 3 + 3 = 3 x x 2 − 1
b) Gợi ý: a 3 + 2 a 2 - a - 2 = (a - 1)(a + 1) (a + 2)
Thực hiện phép tính từ trái qua phải thu được: = 1 3
Cho a1/a2=a2/a3=.....=a2015/a2016
Chứng minh a1/a2016=[(1a1+2a2+3a3+...+2015a2015)/(1a1+2a2+...+2015a2015)]^2015
Ai nhanh mk tick
Rút gọn biểu thức 4 a 7 - 3 - 2 a 2 - 2 - a 3 + 2 ta được:
A. 2a
B. 2 7 a
C. a ( 7 + 2 )
D. a ( 7 - 2 )
Cho đa thức f x = 1 + 3 x n = a 0 + a 1 x + a 2 x 2 + ... + a n x n n ∈ N * . Tìm hệ số a 3 biết rằng a 1 + 2 a 2 + ... + n a n = 49152 n .
A. a 3 = 945
B. a 3 = 252
C. a 3 = 5670
D. a 3 = 1512
Chọn D.
Phương pháp:
Đạo hàm hàm số f(x) và chọn giá trị x phù hợp để tính giá trị biểu thức đề bài cho.
Xác định a để 3 số 1 + 2 a ; 2 a 2 - 1 ; - 2 a theo thứ tự thành lập một cấp số cộng?
A. không có giá trị nào của a
B. a = ± 3 4
C. a = ± 3
D. a = ± 3 2
Chọn D
Theo công thức cấp số cộng ta có:
2 ( 2 a 2 - 1 ) = ( 1 + 2 a ) + ( - 2 a )
⇔ a 2 = 3 4 ⇔ a = ± = 3 2
Cho đa thức f x = 1 + 3 x n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n n ∈ N * Tìm hệ số a 3 biết rằng a 1 + 2 a 2 + . . . + n a n = 4915 n
Cho đa thức f(x) = ( 1 + 3 x ) n = a 0 + a 1 x + a 2 x 2 + . . . . + a n x n ( n ∈ ℕ * ) . Tìm hệ số a 3 , biết rằng: a 1 + 2 a 2 + . . . . + n a n = 49152n
A. a 3 = 945
B. a 3 = 252
C. a 3 = 5670
D. a 3 = 1512
Chọn D
Đạo hàm hai vế f(x)
Số hạng tổng quát thứ k + 1 trong khai triển thành đa thức của