cho xy+yz+zx=1 tinh tong x*can((1+y^2)(1+z^2)/(1+x^2))+y*can((1+x^2)(1+z^2)/(1+y^2))+z*can((1+y^2)(1+x^2)/(1+z^2))
cho: x^2+y^2+z^2=xy+yz+zx tinh A= (1+x/y) .(1+y/z) .(1+z/x)
\(x^2+y^2+z^2=xy+yz+zx\)
\(\Leftrightarrow\)\(x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\)\(\Leftrightarrow\)\(x=y=z\)
\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Cho x; y; z >0, thoả mãn: 1/xy+ 1/yz+1/zx =1
Q= x/√yz × (x^2 +1)+ y/√zx × (y^2 +1) + z/√xy × ( z^2 +1)
tim z,y,z thoa
can x cong can tat ca y tru 1 cong can tat ca z tru 2 bang 1 phan 2 ( x cong y cong z)
tim GTN cua B bang 1 phan x tru can x cong 1
tim x thuoc z de can x cong 1 phan can 3 tru 3 la so nguyen
tinh tong T bang 1 phan can 1 cong can 2 cong 1 phan can 2 cong can 3 cong ... cong den 1 phan can 99 cong can 100
Cho x, y, z > 0 và x+y+z=1.
CMR : \(\dfrac{1-x^2}{x+yz}+\dfrac{1-y^2}{y+zx}+\dfrac{1-z^2}{z+xy}\ge6\)
cho x,y,z thỏa mãn xy+yz+zx=1 tính A=x√[(1+y^2)(1+z^2)/1+x^2]+y√[(1+z^2)(1+x^2)/1+y^2]+z√[(1+x^2)(1+y^2)/1+z^2
cho x,y,z>0 và xyz=1. cmr x/(xy+x+1)^2+y/(yz+y+1)^2+z/(zx+z+1)^2 >= 1/x+y+z
Cho x, y, z khac 0 thoa man 1/x + 1/y + 1/z = 0. Tinh P = \(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}\)
GT \(\Leftrightarrow xy+yz+zx=0\). Khi đó: \(\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3=3.xy.yz.zx=3x^2y^2z^2\).
Do đó: \(P=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3}{x^2y^2z^2}=3\)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=-\frac{1}{z^3}\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+3\cdot\frac{1}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{z^3}=0\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3\cdot\frac{1}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-3\cdot\frac{1}{xy}\cdot\left(-\frac{1}{z}\right)=\frac{3}{xyz}\)
Khi đó có : \(P=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)
Cho x,y,z > 0 thỏa mãn xy + yz +zx = 1.Chứng minh
\(\frac{x-y}{z^2+1}\)+\(\frac{y-z}{x^2+1}\)+\(\frac{z-x}{y^2+1}\)=0
\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)
Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)
1.Giải hệ pt
1)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\\xy+yz+zx=3\\\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=x\end{cases}}\)
2)\(\hept{\begin{cases}xy+yz+zx=3\\\left(x+y\right)\left(y+z\right)=\sqrt{3}z\left(1+y^2\right)\\\left(y+z\right)\left(z+x\right)=\sqrt{3}x\left(1+z^2\right)\end{cases}}\)
3)\(\hept{\begin{cases}xy+yz+zx=3\\1+x^2\left(y+z\right)+xyz=4y\\1+y^2\left(z+x\right)+xyz=4z\end{cases}}\)