Choa,b là các số nguyên . Chứng minh (a+b)(a+2b)(a+3b)(a+4b)+b^4 là số chính phương
chứng minh rằng (a+b)(a+2b)(a+3b)(a+4b)-b^4 là 1 số chính phương
( a + b ) ( a + 2b ) ( a + 3b ) ( a + 4b ) + b4
= ( a2 + 5ab + 4b2 ) ( a2 + 5ab + 6b2 ) + b4
= ( a2 + 5ab + 5b2 - b2 ) ( a2 + 5ab + 5b2 + b2 ) + b4
= ( a2 + 5ab + 5b2 ) - b4 + b4
= a2 + 5ab + 5b2 là số chính phương
Cho a, b là các số nguyên. Chứng minh rằng các số sau đây là số chính phương:
a. A=(a+1)(a+3)(a+5)(a+7)+16
b. B=(a-b)(a-2b)(a-3b)(a-4b)+b4
a: \(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+16\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+16\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+16\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+121\)
\(=\left(a^2+8a+11\right)^2\)
b: \(\left(a-b\right)\left(a-2b\right)\left(a-3b\right)\left(a-4b\right)+b^4\)
\(=\left(a^2-5ab+4b^2\right)\left(a^2-5ab+6b^2\right)+b^4\)
\(=\left(a^2-5ab\right)^2+10b^2\left(a^2-5ab\right)+24b^4+b^4\)
\(=\left(a^2-5ab\right)^2+2\cdot\left(a^2-5ab\right)\cdot5b^2+\left(5b^2\right)^2\)
\(=\left(a^2-5ab+5b^2\right)^2\)
Cho a,b là các số nguyên dương thỏa điều kiện a(2a+1)=b(3b+1). Đặt M=2a+2b+1, chứng minh M là số chính phương
Chứng minh rằng nếu các số nguyên a,b thỏa mãn điều kiện 2a2+a=3b2+b thì a-b và 2a +2b+1 là các số chính phương.
Làm nhak mk tik cko
Cho \(\dfrac{a^2-4b+1}{\left(a-2b\right)\left(2b-1\right)}\)là số nguyên. Chứng minh: \(\left|a-2b\right|\) là số chính phương?
Cho a,b là các số tự nhiên thỏa mãn: 2a2-3b2=b-a
chứng minh: 2a+2b+1 là số chính phương
Cho a,b thuộc n* thỏa mãn 3a^2+a-b=4b^2 Chứng minh rằng a-b và 3a+3b+1 là số chính phương
Cho các số nguyên dương a,b thỏa mãn a >= b và a^2 +4b+3 là số chính phương. Chứng minh rằng b^2 +4a+12 là số chính phương. Giúp mình với mình đang cần gấp plss!! 😭😭😭
Ta đặt \(a^2+4b+3=k^2\)
\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)
Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)
Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)
\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)
\(\Leftrightarrow c^2+c+1+b=l^2\)
Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.
Nếu \(c< b< 2c+1\) thì
\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.
Do vậy, \(c=b\) hay \(a=2b+1\)
Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.
1.Chứng minh nếu n ∈ N* thì
\(25^n+7^n-4^n\left(3^n+5^n\right)\) chia hết cho 65
2.cho a,b là hai số nguyên dương phân biệt thỏa mãn \(2a^2+a=3b^2+b\)
chứng minh a-b và 2a+2b+1 là các số chính phương