Cho a,b,c là các số dương, chứng minh rằng
\(\dfrac{2a^2}{2b+c}+\dfrac{2b^2}{2a+c}+\dfrac{c^2}{4a+4b}\ge\dfrac{1}{4}\left(2a+2b+c\right)\)
Choa,b là hai số thực dương thoả mãn (2a-1)(2b-1)=1 Chứng minh rằng \(\dfrac{1}{a^4+b^2\left(1+2a\right)}+\dfrac{1}{b^4+a^2\left(1+2B\right)}\le\dfrac{1}{2}.\)
Cho a,b là 2 số thực dương thoả mãn 9a^2+4b^2=9 Tìm min A = \(\left(1+a\right)\left(1+\frac{3}{2b}\right)+\left(1+\frac{2b}{3}\right)\left(1+\frac{1}{a}\right)\)
Cho a,b là 2 số thực dương thỏa mãn : \(9a^2+4b^2=9\)Tìm min A = \(\left(1+a\right)\left(1+\frac{3}{2b}\right)+\left(1+\frac{2b}{3}\right)\left(1+\frac{1}{a}\right)\)
Cho a,b là hai số thực dương thỏa mãn :\(9a^2+4b^2=9\)
Tìm giá trị nhỏ nhất của biểu thức \(A=\left(1+a\right)\left(1+\frac{3}{2b}\right)+\left(1+\frac{2b}{3}\right)\left(1+\frac{1}{a}\right)\)
Cho a,b,c là độ dài 3 cạnh 1 tam giác.
Chứng minh rằng:
\(\left(\frac{2a+2b-c}{a+b+4c}\right)^3+\left(\frac{2b+2c-a}{b+c+4a}\right)^3+\left(\frac{2c+2a-b}{c+a+4b}\right)^3\ge\frac{9}{2}\left(a^2+b^2+c^2\right)\)
Chứng minh rằng không tồn tại các số nguyên dương a,b để :
\(A=\left(a+b\right)^2-2a^2\) và \(B=\left(a+b\right)^2-2b^2\)đều là số chính phương.
Cho a,b,c là các số thực dương, Chứng minh rằng \(\frac{\left(2a+b+c\right)^2}{4a^3+\left(b+c\right)^3}+\frac{\left(2b+a+c\right)^2}{4b^3+\left(a+c\right)^3}+\frac{\left(2c+a+b\right)^2}{4c^3+\left(a+b\right)^3}\)
Cho các số thực a, b, c > 0. Chứng minh rằng :
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\ge\frac{1}{3}\)