Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pham ha trang
Xem chi tiết
Nguyễn Phương Ngân
Xem chi tiết
Chirikatoji
Xem chi tiết
Văn Trung Kiên
26 tháng 10 lúc 21:46

khó thế ai mà biết🤯🤯🤯🧮🧮🧮📔📙📘📓

Đoàn Bảo Anh
27 tháng 10 lúc 15:59

dùng chekmath ay

 

ĐẶNG GIA HUY
27 tháng 10 lúc 18:35

Cái này ko phù hợp với lớp 6(ykr)

Thu Phương
Xem chi tiết
Dr. Lemon
Xem chi tiết
Park Jimin
Xem chi tiết
Hà Chí Dương
30 tháng 4 2017 lúc 19:40

dốt thế 

Park Jimin
30 tháng 4 2017 lúc 19:46

Mình ngu lắm dân trần đăng ninh chuyên anh mà làm sao giỏi toán được

Thanh Tùng DZ
30 tháng 4 2017 lúc 20:08

gọi A là tên biểu thức trên

Ta có :

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow A+3A=\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)+\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)\)( 2 )

\(\Rightarrow4A.3=12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)( 1 )

Cộng ( 1 ) và ( 2 ) ta được :

\(16A=3-\frac{101}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow A=\frac{3-\frac{101}{3^{99}}-\frac{100}{3^{100}}}{16}\)

\(\Rightarrow A=\frac{3}{16}-\frac{\frac{101}{3^{99}}-\frac{100}{3^{100}}}{16}< \frac{3}{16}\)

cô nhóc thám tử
Xem chi tiết
trần gia khánh
Xem chi tiết
Phạm thiên ân
11 tháng 11 lúc 20:09

Đúng rồi đó ngu còn bày đặt

Nguyễn Minh Đức
Xem chi tiết
Akai Haruma
31 tháng 12 2023 lúc 11:57

Lời giải:
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3A=1-\frac{2}{3}+\frac{3}{3^2}-.....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow 4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

$\Rightarrow 4A+12A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}<3$

$\Rightarrow 16A< 3$

$\Rightarrow A< \frac{3}{16}$