Chứng minh rằng : Z=1/3-2/3^2+3/3^3-4/3^4+.............+99/3^99-100/3^100 + 0+0 <3/16
chứng minh rằng:
S=(1/3)-(2/32) + (3/33) - (3/34) +.....+(99/3990)-(100/3100)<3/16Chứng minh rằng 1/3-3/2^2+3/3^3-4/3^4+...+99/3^99-100/3^100
Chứng minh rằng : 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
- Chứng minh rằng :
1/3 - 2/3^2 + 3/3^3 - 4/3^4 + ... + 99/3^99 - 100/3^100 < 3/16
CHỨNG minh rằng:1/3-2/3mũ 2+3/3mũ 3-4/3 mũ 4+...+99/3 mũ 99-100/3 mũ 100<3/16
Mình ngu lắm dân trần đăng ninh chuyên anh mà làm sao giỏi toán được
gọi A là tên biểu thức trên
Ta có :
\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow A+3A=\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)+\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)\)( 2 )
\(\Rightarrow4A.3=12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)( 1 )
Cộng ( 1 ) và ( 2 ) ta được :
\(16A=3-\frac{101}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow A=\frac{3-\frac{101}{3^{99}}-\frac{100}{3^{100}}}{16}\)
\(\Rightarrow A=\frac{3}{16}-\frac{\frac{101}{3^{99}}-\frac{100}{3^{100}}}{16}< \frac{3}{16}\)
Chứng minh rằng:1/3-2/3^2+3/3^3-4/4^4+........99/3^99-100/3^100 <3/16
Chứng minh rằng: A=\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Chứng minh rằng:
1/3 - 2/3^2 + 3/3^3 - 4/3^4+......+ 99/3^99 - 100/3^100 < 3/16
Các bạn giúp mình với, mình cảm ơn
Lời giải:
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3A=1-\frac{2}{3}+\frac{3}{3^2}-.....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow 4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
$\Rightarrow 4A+12A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}<3$
$\Rightarrow 16A< 3$
$\Rightarrow A< \frac{3}{16}$