Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
my duyen le
Xem chi tiết
Nguyễn Lê Nguyên Vy
Xem chi tiết
Chiminh
23 tháng 8 2015 lúc 17:50

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Nguyễn Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2021 lúc 20:46

Bài 1: 

Ta có: \(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\cdot...\cdot\left(\dfrac{1}{45}-1\right)\)

\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-44}{45}\)

\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot\dfrac{-14}{15}\cdot\dfrac{-20}{21}\cdot\dfrac{-27}{28}\cdot\dfrac{-35}{36}\cdot\dfrac{-44}{45}\)

\(=\dfrac{11}{27}\)

Ngoc Anh Thai
24 tháng 3 2021 lúc 22:13

Câu 2: 

B=1+1/2+1/3+....+1/2010

 =(1+1/2010)+(1/2+1/2009)+(1/3+1/2008)+...(1/1005+1/1006)

 = 2011/2010+2011/2.2009+2011/3.2008+...+2011/1005.1006

 =2011.(1/2010+.....1/1005.1006)

Vậy B có tử số chia hết cho 2011 (đpcm).

Câu 3:

 \(P=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{98}{99}\\ P< \dfrac{3}{4}.\dfrac{5}{6}.\dfrac{6}{7}....\dfrac{99}{100}\\ P^2< \dfrac{2}{100}\)

 \(\dfrac{2}{100}=\dfrac{1}{50}< \dfrac{1}{49}\\ \Rightarrow P< \dfrac{1}{7}\)

Chan Baek
Xem chi tiết
Nguyễn Ngọc Quý
4 tháng 8 2015 lúc 12:43

Bạn tính ra rồi lấy tử rồi chứng minh        

Nguyễn Hà Phương
Xem chi tiết
Phan Văn Hiếu
8 tháng 8 2016 lúc 17:59

Bài 1

a) 3+ 3+ 3+ 3= 34(1 + 3 + 3+ 33)\

b) a)A = 1 + 3 + 32 +......399 =(1 + 3 +  32 + 33 ) + ...+(396 + 397 + 398 + 399)

                                          =   (1 + 3 +  32 + 33 ) + .. +396(1 + 3 +  32 + 33 )

                                          = 40 + ... + 396 . 40 

                                          = 40 (1 + 3 +...+ 396) chia hết cho 40

Phan Văn Hiếu
8 tháng 8 2016 lúc 18:16

Bài 2 

a)

+)A chia hết cho 6

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2002}\left(5+5^2\right)\)

\(A=30+5^2.30+...+5^{2002}.30\)

\(A=30\left(1+5^2+...+5^{2002}\right)\)chia hết cho 6

+)A chia hết cho 31

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2+5^3\right)+5^3\left(5+5^2+5^3\right)+...+5^{2001}\left(5+5^2+5^3\right)\)

\(A=155+5^3.155+...+5^{2001}.155\)

\(A=155\left(1+5^3+...+5^{2001}\right)\)chia hết cho 31

+) A chia hết cho 156

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2000}\left(5+5^2+5^3+5^4\right)\)

\(A=780+5^4.780+...+5^{2000}.780\)

\(A=780\left(1+5^4+...+5^{2000}\right)\)chia hết cho 156

b)B=165+2^15 chia hết cho 33

ta có 165 chia hết cho 33

mà 215 ko chia hết cho 33

vậy 165+2^15 không chia hết cho 33 hay B không chia hết cho 33.

ngô thị mai
5 tháng 10 2017 lúc 19:12

chứng tỏ A= 1+\(3^1\)+\(3^2\)+....+\(3^{99}\)là B(4) và là B (40).

Pham Hoang Anh
Xem chi tiết
Hà Nguyễn
15 tháng 1 2017 lúc 20:58

 a,

n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2

TH1: n2 : 3 <=> (3k+1): 3 = (9k2+6k+1) : 3 => dư 1

TH2: n: 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1 

các phần sau làm tương tự.

Nguyễn Thị Thảo Linh
Xem chi tiết
Thanh Tùng DZ
10 tháng 12 2017 lúc 20:26

Ta có :

\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\left(1+\frac{1}{6}\right)+\left(\frac{1}{2}+\frac{1}{5}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)\)

\(=\frac{7}{6}+\frac{7}{10}+\frac{7}{12}=\frac{7.21}{60}\)

vì tử số của phân số \(\frac{m}{n}\)bằng 7 . 21 m nên chia hết cho 7

nguyenthanhkieu
Xem chi tiết
Triệu Ngọc Minh
Xem chi tiết