Phan tich da thuc thanh nhan tu
x^7+x^5+1
phan tich da thuc thanh nhan tu
x(x-4)+5x-20
\(=x\left(x-4\right)+5\left(x-4\right)=\left(x+5\right)\left(x-4\right)\)
phan tich da thuc sau thanh nhan tu (x-1)(x-3)(x-5)(x-7)-20
\(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20=\left[\left(x-1\right)\left(x-7\right)\right].\left[\left(x-3\right)\left(x-5\right)\right]-20\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
Đặt \(x^2-8x+11=t\) \(\Rightarrow\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20=\left(t-4\right)\left(t+4\right)-20=t^2-16-20=t^2-36=\left(t-6\right)\left(t+6\right)\)\(\Rightarrow\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20=\left(x^2-8x+11-6\right)\left(x^2-8x+11+6\right)=\left(x^2-8x+17\right)\left(x^2-8x+5\right)\)
phan tich da thuc thanh nhan tu
a, x^7+x^2+1
b, x^7+x^5+1
a) \(x^7+x^2+1\)
\(=x^7-x+x+x^2+1\)
\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^4+x\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^5-x^4+x^2-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^5-x^4+x^2-x+1\right)\left(x^2+x+1\right)\)
b) \(x^7+x^5+1\)
\(=x^7+x^6+x^5-x^6+1\)
\(=\left(x^7+x^6+x^5\right)-\left(x^6-1\right)\)
\(=x^5\left(x^2+x+1\right)-\left(x^3+1\right)\left(x^3-1\right)\)
\(=x^5\left(x^2+x+1\right)-\left(x^4-x^3+x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^5-x^4+x^3-x^2+1\right)\left(x^2+x+1\right)\)
\(x^7+x^2+1\)
\(=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
phan tich da thuc sau thanh nhan tu: 3(x+5)(x+6)(x+7)-8x(2 cach)
cac ban oi giup minh bai toan phan tich da thuc thanh nhan tu x^7+x^5+1
\(x^7+x^5+1\)
\(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
k cho mình nha
\(\text{Đa thức bậc 7 = đa thức bậc 2 + đa thức bậc 5 }\)
\(\text{Chia theo sơ đồ Hoocner sẽ nhanh hơn}\)
\(\text{OoO cô bé tinh nghịch OoO làm đúng rồi nhé}\)
phan tich da thuc thanh nhan tu
x^5+x+1
x^5+x+1
=x(x^4+1)+1
=(x^2+x+1)(x^3-x^2+1)
Ta có : x5 + x + 1
= x5 + x4 - x4 - x3 + x3 + x2 - x2 - x + x + 1
= (x5 + x4) - (x4 + x3) + (x3 + x2) - (x2 + x) + (x + 1)
= x5(x + 1) - x4.(x + 1) + x3(x + 1) - x2(x + 1) + (x + 1)
= (x + 1)(x5 - x4 + x3 - x2 + 1)
phan tich da thuc thanh nhan tu x4+x7+1
phan tich da thuc sau thanh nhan tu: x5+x+1
\(x5+x-1 = x5-x4+x3+x4-x3+x2-x2+x-1 = x3(x2-x+1)+x2(x2-x+1)-(x2-x+1) = (x2-x+1)(x3+x2-1) \)
hc tốt nha !!!!!!!!!
phan tich da thuc thanh nhan tu x^5+x+1
\(x^5+x+1=x^5-x^2+x^2+x+1=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)