Cho tam giác ABC O nằm trong tam giác các tia AO BO CO cắt BC CA AB tại P Q R cmr
\(\frac{OA}{OP}.\frac{OB}{OQ}.\frac{OC}{ỎR}\ge8\)
Cho tam giác ABC và O là một điểm bất kì trong tam giác. Các tia AO, Bo, Co cắt các cạnh BC, CA, AB thứ tự tại các điểm P, Q, R.
Chứng minh \(\frac{OA}{OP}.\frac{OB}{OQ}.\frac{OC}{OR}\ge8\)
Cho tam giác ABC có độ dài các cạnh AB=a,BC=b,CA=C thõa mãn a>b>c và O là điểm bất kì nằm trong tam giác đó,các đoạn AO,BO,CO lần luợng cắt các cạnh tam giác ABC tại P,Q,R.Chứng minh rằng OP+OQ+OR<a
cho tam giác ABC và O là một điểm bất kì trong tam giác. Các Tia AO, BO, CO cắt các cạnh BC, CA, AB thứ tự tại các điểm P, Q, R. Chứng minh \(\frac{OA}{OP}\times\frac{OB}{OQ}\times\frac{OC}{OR}\ge8\)
Cho tam giác ABC và O là một điểm bất kì trong tam giác. Các tia AO,BO, CO cắt các cạnh BC,CA,AB thứ tự tại các điểm P,Q,R. Chứng minh \(\frac{OA}{OP}.\frac{OB}{OQ}.\frac{OC}{OR}\ge8\)
cho tam giác ABC, phân giác BE và CF cắt nhau tại O. chứng minh nếu \(\frac{BO}{OE}.\frac{CO}{OF}=\frac{\left(AB+BC+CA\right)^2}{2AB.AC}\)thì tam giác ABC vuông
Cho tam giác ABC và O là một điểm bất kỳ trong tam giác. Các tia AO, BO, CO cắt các cạnh BC, CA, AB thứ tự tại các điểm P, Q, R. Chứng minh \(\dfrac{OA}{OP}.\dfrac{OB}{OQ}.\dfrac{OC}{OR}\ge8\)
cho tam giác ABC và O là một điểm bất kỳ trong tam giác. các tia AO,BO,CO cắt các cạnh BC,CA,AB thứ tự tại các điểm P,Q,R. chứng minh OA/OP*OB/OQ*OC/OR>=8
cho tam giác ABC và O là mọt điểm bất kì trong tam giác.Các tia AO,BO,CO cắt các cạnh BC,CA,AB thứ tự tại các điểm P,Q,R.Chứng minh \(\dfrac{OA}{OP}.\dfrac{OB}{OQ}.\dfrac{OC}{OR}\ge8\)
Lời giải:
Đặt \(S_{BOC}=S_1;S_{AOC}=S_2;S_{AOB}=S_3;S_{ABC}=S\)
Ta có \(\dfrac{OA}{OP}=\dfrac{S_{AOB}}{S_{POB}}=\dfrac{S_{AOC}}{S_{POC}}=\dfrac{S_{AOB}+S_{AOC}}{S_{COB}}=\dfrac{S_2+S_3}{S_1}\)
Tương tự:\(\dfrac{OB}{OQ}=\dfrac{S_3+S_1}{S_2};\dfrac{OC}{OR}=\dfrac{S_1+S_2}{S_3}\)
\(\Rightarrow\dfrac{OA}{OP}.\dfrac{OB}{OQ}.\dfrac{OC}{OR}=\dfrac{\left(S_1+S_2\right)\left(S_2+S_3\right)\left(S_3+S_1\right)}{S_1.S_2.S_3}\ge\)
\(\ge\dfrac{2\sqrt{S_1.S_2}.2\sqrt{S_2.S_3}.2\sqrt{S_3.S_1}}{S_1.S_2.S_3}=8\)
Dấu "=" xảy ra \(\Leftrightarrow S_1=S_2=S_3\Leftrightarrow\) O là giao điểm ba đường trung tuyến tam giác ABC
cho điểm O nằm trong tam giác ABC , các tia AO , BO , CO cắt các cạnh của tam giác ABC lần lượt ở D , E ,F , Trong hình vẽ tạo ra số tam giác là