cho tam giác ABC và O là mọt điểm bất kì trong tam giác.Các tia AO,BO,CO cắt các cạnh BC,CA,AB thứ tự tại các điểm P,Q,R.Chứng minh \(\dfrac{OA}{OP}.\dfrac{OB}{OQ}.\dfrac{OC}{OR}\ge8\)
Cho điểm O thuộc miền trong tam giác ABC. Các tia AO, BO, CO cắt các cạnh của tam giác ABC theo thứ tự ở D, E, F. CMR: \(\dfrac{OA}{OD}+\dfrac{OB}{OE}+\dfrac{OC}{OF}\ge6\). Tìm vị trí của O để dấu đẳng thức xảy ra
Lấy điểm O trong ΔABC, các tia AO, BO, CO cắt BC, AC, AB lần lượt tại P, Q, R. Cm:\(\frac{OA}{AP}+\frac{OB}{BQ}+\frac{OC}{CR}=2\)
cho điểm O thuộc miền trong của tam giác ABC các tia AO,BO,CO cắt các cạnh của tam giác ABC lần lượt tại D,E,F.Chứng minh rằng \(\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{CF}\)=2
Cho tam giác ABC vuông tại A, đường cao AD (D\(\in\)BC), kẻ DE, DF lần lượt vuông góc với AC, AB (E\(\in\)AC; F\(\in\)AB)
a) Chứng minh: \(BC^2=2.AD^2+BD^2+CD^2\)
b) Chứng minh: \(\frac{AC^3}{AB^3}=\frac{CE}{BF}\)
c) Lấy điểm O trong tam giác ABC. Các tia AO, BO, CO, cắt BC, AC, AB lần lượt tại P, Q, R. Chứng minh: \(\frac{OA}{AP}+\frac{OB}{BQ}+\frac{OC}{CR}=2\)
GIAỈ ĐƯỢC CÂU NÀO THÌ GIẢI GIÚP E VS ẠK. E CẢM ƠN!!
Từ điểm M nằm trong tam giác ABC, kẻ các tia Mx, My, Mz theo thứ tự vuông góc với BC, AC, AB. Trên các tia Mx, My, Mz lần lượt lấy các điểm P, Q, R sao cho MP=BC, MQ=CA, MR=AB. CMR: M là trọng tâm của tam giác PQR
1.Cho tam giác ABC , điểm D nằm trên cạnh BC sao cho \(\frac{DB}{DC}=\frac{1}{2}\); điểm O nằm trên đoạn AD sao cho \(\frac{OA}{OD}=\frac{3}{2}\) . Gọi K là giao điểm của BO và AC . Tính tỷ số AK:AC.
2.Cho tam giác ABC có 3 góc nhọn , trực tâm H . Một đường thẳng qua H cắt AB,AC theo thứ tự ở P và Q sao cho HP=HQ . Gọi M là trung điểm của BC . Chứng minh rằng tam giác MPQ cân tại M.
Cho △ ABC,điểm I nằm trong tam giác,các tia AI,BI,CI cắt cạnh BC,AC,AB theo thứ tự tự ở D,E,F .Qua A kẻ đường thẳng song song với BC cắt tia CI tại H và cắt tia BI tại K .Chứng minh :
a)\(\frac{AK}{BD}=\frac{HA}{DC}\)
b)\(\frac{FA}{BF}+\frac{AE}{CE}=\frac{AI}{ID }\)
Cho tam giác ABC đều có O là trung điểm cạnh BC. Vẽ góc xOy=60 độ sao cho các tia Ox, Oy cắt các cạnh AB, AC lần lượt tại E, F. Chứng minh rằng:
a) BC2 = 4. BE . FC
b) EO là phân giác góc BEF