Rút gọn: [(căn x) +3]/[(căn x) - 3] - [(căn x) -3]/[(căn x) + 3] - [6x/9- (căn x)]
bài 1rút gọn bt a, 2 căn 10 - 5 trên 4 - căn 10 b, (2/3 căn 3) - (1/4 căn 18) + (2/5 căn 2) - 1/4 căn 12 bài 2:c/m các đẳng thức : [căn x + căn y trên căn x - căn y) - ( căn x - căn y trên căn x + căn y) : căn xy trên x-y =4 bài 3: cho B={[2 căn x trên căn x +3] + [ căn x trên căn x - 3] - 3[ căn x +3] trên x-9} : { [ 2 căn x -2 trên căn x -3] -1} a, rút gọn b, tìm x để P<-1 Mọi ng giúp mk nhé
Cho p=(2 căn x -9)/(căn x-2)(căn x-3) - (căn x+3)/(căn x-2) - (2 căn x+1)/(3-căn) ( x > 0; x ≠ 4, x ≠ 9)
a. Rút gọn P
b. Tìm x để P = 5
c. Tìm x nguyên để P có giá trị là số tự nhiên.
rút gọn x - 3 - căn x^2 -6x +9
\(x-3-\sqrt{x^2-6x+9}\left(1\right)=x-3-\sqrt{\left(x-3\right)^2}=x-3-\left|x-3\right|\)
TH1: \(x< 3\)
\(\left(1\right)=x-3+x-3=2x-6\)
TH2: \(x\ge3\)
\(\left(1\right)=x-3-x+3=0\)
\(x-3-\sqrt{x^2-6x+9}\)
\(=x-3-\left|x-3\right|\)
\(=\left[{}\begin{matrix}x-3-x+3=0\left(x\ge3\right)\\x-3+x-3=2x-6\left(x< 3\right)\end{matrix}\right.\)
rút gọn biểu thức : A= 3.căn x -2 /1- căn x - 2. căn x +3/căn x + 3 + 15. căn x -11/x+ 2.căn x -3
phân tích đa thức thành nhân tử:
1)x-5(x>0)
2)3+4x(x<0)
rút gọn biểu thức
1)x-(5 căn x)+6/(căn x)-3(x>=0,x><9)
2)6-2x-(căn của 9-6x+x^2) (x<3)
Rút gọn biểu thức
A= căn x+1 B=4 căn x/x+4 A=x-căn x+1
A=3 /2 căn x A=3/căn x+3
A=1-căn x A=x-2 căn x-1
\(A=\sqrt{x}+1\) (đã thu gọn)
\(B=\dfrac{4\sqrt{x}}{x+4}\) (đã thu gọn)
\(A=x-\sqrt{x}+1=\sqrt{x}\cdot\sqrt{x}-\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}-1\right)+1\)
\(A=\dfrac{3}{2\sqrt{x}}\) (đã thu gọn)
\(A=\dfrac{3}{\sqrt{x}+3}\) (đã thu gọn)
\(A=1-\sqrt{x}\) (đã thu gọn)
\(A=x-2\sqrt{x}-1=\sqrt{x}\left(\sqrt{x}-2\right)-1\)
cho A=6 căn x/x-9 -5 căn x/3- căn x + căn x/căn x+3
a,rút gọn a
b,tìm x để A>2
giúp mk nha
\(a,\)\(đkxđ\Leftrightarrow x\ge0\)và \(x-9\ne0\Rightarrow x\ne9\)
\(A=\frac{6\sqrt{x}}{x-9}-\frac{5\sqrt{x}}{3-\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+3}\)
\(\)\(=\frac{6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{6\sqrt{x}+5x+15\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{18\sqrt{x}+6x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{6\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{6\sqrt{x}}{\sqrt{x}-3}\)
\(b,\)Để \(A>2\)\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>2\)
\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>\frac{12\sqrt{x}}{x-3}\)
\(\Rightarrow\frac{6\sqrt{x}-12\sqrt{x}}{\sqrt{x}-3}>0\)
\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}< 0\)
Vì \(\sqrt{x}\ge0;\)\(6>0\)\(\Rightarrow6\sqrt{x}\ge0\)
\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>0\Leftrightarrow\sqrt{x}-3< 0\)
\(\Rightarrow\sqrt{x}< 3\Rightarrow\sqrt{x}< \sqrt{9}\)\(\Leftrightarrow x< 9\)
Mà \(x\ge0\left(đkxđ\right)\)\(\Rightarrow0\le x< 9\)
rút gọn
B=(1/căn x+3+1/căn x-3).4 căn x+12/căn x
Ta có: \(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{8\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
rút gọn : ( x căn 6/x + căn 2x/3 + căn 6x) : căn 6x
\(=\left(\sqrt{6x}+\dfrac{1}{3}\sqrt{6x}+\sqrt{6x}\right):\sqrt{6x}=2+\dfrac{1}{3}=\dfrac{7}{3}\)