chứng minh (x+1).(x+3).(x+5).(x+7)+15 chia hết cho (x+6)
Không dùng phương pháp thế hệ số bất định
chứng minh x10 + x5 + x2 +x - 4 chia hết cho x -1
không dùng phương pháp hệ số bất định
x10 + x5 + x2 + x - 4
= x10 - x5 + 2x5 - 2x2 + 3x2 - 3x + 4x - 4
= x5(x5 - 1) + 2x2(x3 - 1) + 3x(x - 1) + 4(x - 1)
...
còn lại tự làm
chứng minh đa thức (x+1).(x+3).(x+5).(x+7)+15 chia hết cho (x+6)
Ta có: (x + 1).(x + 3).(x + 5).(x + 7) + 15
= [(x + 1)( x+ 7)].[(x + 3)(x + 5)] + 15
= (x2 + 8x + 7)(x2 + 8x + 15) + 15
= [(x2 + 8x + 11) - 4][(x2 + 8x + 11) + 4] + 15
= (x2 + 8x + 11)2 - 4(x2 + 8x + 11) + 4(x2 + 8x + 11) - 16 + 15
= (x2 + 8x + 11)2 - (16 - 15)
= (x2 + 8x + 11)2 - 1
= (x2 + 8x + 11 - 1).(x2 + 8x + 11 + 1)
= (x2 + 8x + 10).(x2 + 8x +12)
= (x2 + 8x + 10).(x2 + 6x + 2x +12)
= (x2 + 8x + 10)(x + 2)(x + 6) chia hết cho x + 6
@HUNG nguyen tag chẳng đc
@Ribi Nkok Ngok
Ai giải được giúp mình với cần gấp
Không dùng phương pháp hệ số bất định (thế x = -6 rồi tính) KHÔNG ĐƯỢC DÙNG
Bài 1: Tìm các số tự nhiên x biết
a) 76 - 6(x-1) = 10
b) 3.4^3 - 7 - 185
c) 5x + 15 chia hết cho x + 2.
Bài 3: Cho D = 6 + 6^2 + 6^3 + 6^4 +...+ 6^120 . Chứng minh D chia hết cho 7. Chia hết cho 43
Bài 1:
a: 76-6(x-1)=10
\(\Leftrightarrow x-1=11\)
hay x=12
c: \(5x+15⋮x+2\)
\(\Leftrightarrow x+2=5\)
hay x=3
Bài 1:
a) 76 - 6 (x - 1) = 10
6 (x - 1) = 76 - 10
6 (x - 1) = 66
x - 1 = 66 : 6
x - 1 = 11
x = 11 + 1
x = 12
b) 3 . 43 - 7 - 185
= 3 . 64 - 7 - 185
= 192 - 7 - 185
= 185 - 185
= 0
Dùng phương pháp hệ số bất định
a) x^4-8x+63
b) (x+1)^4+(x^2+x+1)^2
Chứng minh rằng với mọi x thuộc N thì M= (x+1)(x+3)(x+5)(x+7)+15 chia hết cho x+6
\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
\(=\left(x^2+8x+11\right)^2-16+15=\left(x^2+8x+11\right)^2-1=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)⋮\left(x+6\right)\)
\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(\Rightarrow M=x^4+16x^3+86x^2+176x+120\)
\(\Rightarrow M=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(\Rightarrow M=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
Sau khi phân tích đa thức M thành nhân tử, ta thấy: M chứa thừa số x + 6 nên \(M⋮\left(x+6\right)\)
Vậy với mọi \(x\inℕ\)thì\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15⋮\left(x+6\right)\)
\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+6\right)+\left(x+1\right)\left(x+3\right)\left(x+6\right)-\left(x+1\right)\left(x+6\right)+\)
\(\left(x+1\right).3+15\)
\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+6\right)+\left(x+1\right)\left(x+3\right)\left(x+6\right)-\left(x+1\right)\left(x+6\right)+3\left(x+6\right)\)
\(=\left(x+6\right)\left[\left(x+1\right)\left(x+3\right)\left(x+5\right)+\left(x+1\right)\left(x+3\right)-\left(x+1\right)+3\right]\)chia hết cho x+6
Bài 1. Chứng tỏ 2022 . 15 + 25 chia hết cho 5
Bài 2: Chứng tỏ 1998 . 30 + 19 không chia hết cho 6
Bài 3. Cho x thuộc tập hợp {25; 49; 56; 100} và x - 35 không chia hết cho 7. Tìm x.
Bài 4. Số tự nhiên b chia cho 40 dư 8. Hỏi b có chia hết cho 4 không? có chia hết cho 5 không? Vì sao?
(giúp mình nha mình đang cần gấp )
Tải file lênBài 1:vì 15 chia hết cho 5 suy ra 2022.15 chia hết cho 5
vì 25 chia hết cho 5 suy ra 2022.15 + 25 chia hết cho 5
Phân tích đa thức thành nhân tử bằng phương pháp dùng hệ số bất định với các hê số nguyên x mũ 4 - 5xmũ 3 + 7x mũ 2 - 6
Đặt H \(=x^4-5x^3+7x^2-6\)
Gỉa sử : \(H=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
\(=x^4+cx^3+dx^2+ax^{3\:}+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)
\(\Leftrightarrow\hept{\begin{cases}a+c=-5\\ac+b+d=7\\ad+bc=0\end{cases}}\)
\(\left\{bd=6\right\}\)
\(\Leftrightarrow\hept{\begin{cases}a=-3\\b=3\\c=-2\end{cases}}\)
\(\left\{d=-2\right\}\)
\(\Rightarrow H=\left(x^2-3x+3\right)\left(x^2-2x-2\right)\)
Chúc bạn học tốt !!!
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ