tìm giá trị nhỏ nhất của biểu thức : 4a^2 + (4a+2)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a dương. Tìm giá trị nhỏ nhất của biểu thức P=4a2-3a+\(\frac{1}{4a}\)+2018
dễ vãi :
\(4a^2-3a+\frac{1}{4a}+2018=4a^2-4a+1+a+\frac{1}{4a}+2017=\left(2a-1\right)^2+a+\frac{1}{4a}+2017\)
áp dụng BDT cosooossi 2 số ta có: \(a+\frac{1}{4a}\ge2\sqrt{a.\frac{1}{4a}}=2\sqrt{\frac{1}{4}}=2.\frac{1}{2}=1\)
\(\left(2a-1\right)^2\ge0\forall a\)
nên: \(\left(2a-1\right)^2+a+\frac{1}{4a}+2017\ge2018\forall a\)hay \(4a^2-3a+\frac{1}{4a}+2018\ge2018\forall a\)
dấu = xảy ra <=>\(a=\frac{1}{2}\)
Cho biểu thức: \(M=\left(\frac{\left(a-1\right)^2}{31+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) Tìm a để M > 0
c) Tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. Tìm giá trị nhỏ nhất đó
Tìm giá trị nhỏ nhất của biểu thức A :
A= \(a^4-2a^3+3a^2-4a+5\)
\(A=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)
\(A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
\(A_{min}=3\) khi \(a=1\)
Tìm giá trị nhỏ nhất của biểu thức
a) 4a2+4a+2
b) x2-4xy+5y2+10x-22y+28
Tìm giá trị nhỏ nhất của biểu thức:
a, A=x2-30x+101
b,B=4a2+4a+2
Tìm giá trị lớn nhất của biểu thức:
a,A=4x-x2+3
b,B=x-x2
Các bạn giúp mình với!!
Bài 1:
a: \(A=x^2-30x+225-114=\left(x-15\right)^2-114>=-114\forall x\)
Dấu '=' xảy ra khi x=15
b: \(B=4a^2+4a+1+1=\left(2a+1\right)^2+1>=1\forall a\)
Dấu '=' xảy ra khi a=-1/2
Bài 2:
a: \(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x=2
Tìm giá trị nhỏ nhất của biểu thức:
a, A=x2-20x+101
b,B=4a2+4a+2
Giúp mình với ☺☺
A= \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\ge1\)
=> GTNN của A =1 khi x-10=0=> x=10
B= \(4a^2+4a+2=\left(2a+1\right)^2+1\ge1\)
=> GTNN của B=1 khi 2a+1=0=> a=-1/2
Tìm giá trị nhỏ nhất của biểu thức
a,x2-20x+101
b,4a2+4a+2
c,x2-4xy+5y2+10x-22y+28
a) Ta có : x2 - 20x + 101
= x2 - 20x + 100 + 1
= (x - 10)2 + 1
Mà (x - 10)2 lớn hơn hoặc bằng 0
Nên (x - 10)2 + 1 lớn hơn hoặc bằng 1
=> GTNN của biểu thức là 1 . khi x = 10
b) 4a2+4a+2
=(2a)2+2.2a+1+1
=(2a+1)2+1
Vì (2a+1)2 \(\ge\)0 với mọi x \(\in\)R
=>(2a+1)2+1\(\ge\)1 với mọi x \(\in\)R
dấu "=" xảy ra <=> 2a+1=0 <=> 2a=-1 <=> a= -1/2
câu c bạn tham khảo tại link sau nhé !
https://h oc 24.vn/hoi-dap/question/394806.html
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\sqrt{21+4a-a^2}-\sqrt{10+3a-a^2}\)
tìm giá trị nhỏ nhất của biểu thức
a4-2a3+3a2-4a+5