Cho hình phẳng giới hạn bởi đồ thị hàm số f(x) = \(\sin\dfrac{x}{2}\), trục hoành và hai đường thẳng x = 0, \(x=\dfrac{\pi}{2}\). Tính thể tích khối tròn xoay tạo thành khi cho hình phẳng đó quay quanh trục Ox.
Cho hàm số y = f ( x ) = 3 x 2 khi x ≤ 1 4 - x khi > 1 . Thể tích của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và các đường thẳng x = 0, x = 2 quanh trục hoành bằng
A. 29 4
B. 29 π 4
C. 122 15
D. 122 π 15
Cho hàm số f(x) thỏa mãn f ' x 2 + f x . f " x = 2018 x ∀ x ∈ R và f(0) = f’(0) = 1. Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số f(x), trục hoành và hai đường thẳng x = 0; x = 2. Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox.
A. V = 8090 3 2
B. V = 4036π
C. V = 8090 3 π
D. V = 8090π/3
Cho hình phẳng (D) giới hạn bởi đồ thị hàm số y = x , hai đường thẳng x = 1 , x = 2 và trục hoành. Tính thể tích V của khối tròn xoay tạo thành khi quay (D) quanh trục hoành.
A. V = 3 π 2
B. V = 3 π
C. V = 3 2
D. V = 2 π 3
Cho hàm số f(x) thỏa mãn f ' x 2 + f x f ' ' x = 2018 x , ∀ x ∈ ℝ và f 0 = f ' 0 = 1 . Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số f(x), trục hoành và hai đường thẳng x = 0 , x = 2 . Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox.
A. V = 8090 3 2 π
B. V = 4036 π
C. V = 8090 3 π
D. V = 8090 3 π
Cho miền phẳng (D) giới hạn bởi đồ thị hàm số y = x , hai đường thẳng x = 1 , x = 2 và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay (D) quanh trục hoành.
A. 3 π 2
B. 3 π
C. 3 2
D. 2 π 3
Đáp án D
V = π ∫ a b y 2 d x = π ∫ 1 2 x d x = π x 2 2 1 2 = 3 π 2
Cho miền phẳng (D) giới hạn bởi đồ thị hàm số y = x , hai đường thẳng x = 1, x = 2 và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay (D) quanh trục hoành.
A. 3 π 2
B. 3π
C. 3 2
D. 2 π 3
Thể tích của khối tròn xoay tạo thành khi quay hình phẳng
giới hạn bởi đồ thị hàm số y = tan x , trục hoành và các
đường thẳng x = 0, x= π 4 quanh trục hoành là
A. V= π 4
B. V = πln 2 2
C. V = π 2 4
D. V = π 4
Cho hàm số y = f(x) liên tục trên đoạn [a;b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và hai đường thẳng x =a; x=n Thể tích của khối của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức:
Thể tích của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số y = tan x trục hoành và các đường thẳng x = 0 , x = π 4 quanh trục hoành là
A. V = π 4
B. V = π ln 2 2
C. V = π 2 4
D. V = π 4
Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = x 2 - 3 x + 2 trục hoành và hai đường thẳng x=1,x=2 Thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành bằng
A. π/30
B. π/6
C. 1/6
D. 1/30