Cho hình phẳng D giới hạn bởi đường cong y = 2 + sin x , trục hoành và các đường thẳng x = 0; x = π . Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu ?
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = ( x - 2 ) . e 2 x , trục tung và trục hoành. Thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox có dạng π ( e a + b ) c . Khi đó a+b+c bằng
A. 2
B. 56
C. -1
D. -24
Cho hình phẳng (D) giới hạn bởi các đường y = x - π , y = sinx và x = 0 . Gọi V là thể tích khối tròn xoay tạo thành do (D) quay quanh trục hoành và V = pπ 4 ( p ∈ Q ) . Giá trị của 24p bằng
A. 8
B. 4
C. 24
D. 12
Cho hình phẳng giới hạn bởi các đường y=√x và y=x quay xung quanh trục Ox. Thể tích của khối tròn xoay tạo thành bằng:
(A). 0
(B). –π
(C). π
(D). π/6
Gọi V là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường y = x , y = 0 và x = 4 quanh trục Ox. Đường thẳng x = a (0< a< 4 cắt đồ thị hàm số y = x tại M (hình vẽ). Gọi V1 là thể tích khối tròn xoay tạo thành khi quay tam giác OMH quanh trục Ox. Biết rằng V=2V1. Khi đó
A. .
B. .
C. .
D. .
Cho số thực dương a, kí hiệu H là hình phẳng giới hạn bởi đồ thị hàm số y = 4 ( x - a ) e x , trục hoành và trục tung. Gọi V là thể tích của khối tròn xoay tạo thành khi quay H quanh trục hoành, tìm a biết V = 4 π ( e 2 - 5 ) .
Thể tích khối tròn xoay tạo bởi phép quay quanh trục Ox của hình phẳng giới hạn bởi các đường: y = sin 2 / 3 x , y = 0 và x = π /2 bằng:
A. 1; B. 2/7;
C. 2 π ; D. 2 π /3.
Cho hình phẳng (D) được giới hạn bởi các đường x=0; x = π ; y = 0 và y = -sinx. Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:
Cho hình phẳng D giới hạn bởi đường cong y = 2 + cos x , trục hoành và các đường thẳng x = 0; x = π 2 . Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?