Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Trung Kiên
Xem chi tiết
PHAN ĐỨC KIÊN
16 tháng 2 2021 lúc 9:19

x=3 y=2'

Khách vãng lai đã xóa
trần minh anh
28 tháng 2 2021 lúc 22:01

165 nha

Khách vãng lai đã xóa
Bạch Phương Diệp
1 tháng 3 2021 lúc 20:06

thôi, giơ hai tay nói CHỊU

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 9 2018 lúc 10:48

Cách 1

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) ta rút ra được y = 3x – 5 (*)

Thế (*) vào phương trình (2) ta được :

5x + 2(3x – 5) = 23 ⇔ 5x + 6x – 10 = 23 ⇔ 11x = 33 ⇔ x = 3.

Thay x = 3 vào (*) ta được y = 3.3 – 5 = 4.

Vậy hệ phương trình có nghiệm duy nhất (3 ; 4).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 1 2018 lúc 15:20

Cách 1

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) ta rút ra được y = 3x – 5 (*)

Thế (*) vào phương trình (2) ta được :

5x + 2(3x – 5) = 23 ⇔ 5x + 6x – 10 = 23 ⇔ 11x = 33 ⇔ x = 3.

Thay x = 3 vào (*) ta được y = 3.3 – 5 = 4.

Vậy hệ phương trình có nghiệm duy nhất (3 ; 4).

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (2) ta rút ra được y = 2x + 8 (*)

Thế (*) vào phương trình (1) ta được :

3x + 5(2x + 8) = 1 ⇔ 3x + 10x + 40 = 1 ⇔ 13x = -39 ⇔ x = -3.

Thay x = - 3 vào (*) ta được y = 2.(-3) + 8 = 2.

Vậy hệ phương trình có nghiệm duy nhất (-3 ; 2).

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) ta rút ra được x = 2 3 y  (*)

Thế (*) vào phương trình (2) ta được :

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Thay y = 6 vào (*) ta được x = 4.

Vậy hệ phương trình có nghiệm duy nhất (x ; y) = (4 ; 6).

Cách 2

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Giải hệ phương trình Giải bài 12 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9 ta làm như sau:

Bước 1: Từ một phương trình (coi là phương trình thứ nhất), ta biểu diễn x theo y (hoặc y theo x) ta được phương trình (*). Sau đó, ta thế (*) vào phương trình thứ hai để được một phương trình mới ( chỉ còn một ẩn).

Bước 2: Dùng phương trình mới ấy thay thế cho phương trình thứ hai, phương trình (*) thay thế cho phương trình thứ nhất của hệ ta được hệ phương trình mới tương đương .

Bước 3: Giải hệ phương trình mới ta tìm được nghiệm của hệ phương trình.

+ Nếu xuất hiện phương trình dạng 0x = a (hoặc 0y = a) thì ta kết luận hệ phương trình vô nghiệm nếu a ≠ 0 hoặc hệ có vô số nghiệm nếu a = 0.

Hải Yến Lê
Xem chi tiết
Thu Thao
21 tháng 4 2021 lúc 14:26

Linh tinh đếyyy ạ. Có gì sai thông cảm nhaaaaundefined

mira 2276
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 3 2021 lúc 17:37

Đề bài là \(\left\{{}\begin{matrix}2x+\dfrac{1}{y}=\dfrac{3}{x}\\2y+\dfrac{1}{x}=\dfrac{3}{y}\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}\dfrac{2x+1}{y}=\dfrac{3}{x}\\\dfrac{2y+1}{x}=\dfrac{3}{y}\end{matrix}\right.\) nhỉ?

Tốt nhất là bạn sử dụng tính năng gõ công thức trực quan, rất dễ sử dụng, nó nằm chỗ khoanh đỏ này trong khung soạn thảo:

undefined

Click vô đó, rồi chọn 

undefined

Hệ 2 ẩn nằm ở đầu tiên hàng 2

Phân thức thì chỉ cần gõ "/" hoặc chọn biểu tượng phân thức 

undefined

Khiêm Nguyễn Gia
Xem chi tiết
Akai Haruma
25 tháng 10 2023 lúc 0:52

Lời giải:

Lấy 2 PT trừ theo vế thì:

$x^3-y^3=x-y$

$\Leftrightarrow (x-y)(x^2+xy+y^2)-(x-y)=0$

$\Leftrightarrow (x-y)(x^2+xy+y^2-1)=0$

$\Rightarrow x-y=0$ hoặc $x^2+xy+y^2=1$
TH1: $x-y=0\Leftrightarrow x=y$

Thay vào PT(1):

$x^3=3x\Leftrightarrow x(x^2-3)=0\Leftrightarrow x=0$ hoặc $x=\pm \sqrt{3}$

Vậy $(x,y)=(0,0), (\sqrt{3}, \sqrt{3}), (-\sqrt{3}, -\sqrt{3})$

TH2: $x^2+xy+y^2=1(*)$

Cộng 2 PT theo vế: $x^3+y^3=3(x+y)$

$\Leftrightarrow (x+y)(x^2-xy+y^2-3)=0$

Nếu $x+y=0$ thì $x=-y$. Thay vào $(*)$:

$x^2+x(-x)+y^2=1$

$\Leftrightarrow y^2=1\Leftrightarrow y=\pm 1$

Vậy $(x,y)=(1,-1), (-1,1)$

Nếu $x^2-xy+y^2-3=0$

$\Leftrightarrow (x^2+xy+y^2)-2xy-3=0$

$\Leftrightarrow 1-2xy-3=0$

$\Leftrightarrow xy=-1$

$x^2+y^2=1-xy=1-(-1)=2$

$\Leftrightarrow (x+y)^2-2xy=2$

$\Leftrightarrow (x+y)^2-2(-1)=2$

$\Leftrightarrow x+y=0$

$\Leftrightarrow x=-y$. Thay vào $xy=-1$ thì: $y^2=1\Leftrightarrow y=\pm 1$

Nếu $y=1$ thì $x=-y=-1$. Nếu $y=-1$ thì $x=-y=1$

Vậy $(x,y)=(-1,1), (1,-1)$.

Vậy............

Mạnh Châu
Xem chi tiết
nghia
13 tháng 7 2017 lúc 12:40

\(\Leftrightarrow\hept{\begin{cases}y=5-2x\\5x+2.\left(5-2x\right)=12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=5-2x\\5x+10-4x=12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=5-2x\\x=12-10\end{cases}\Leftrightarrow\hept{\begin{cases}y=5-2.2=1\\x=2\end{cases}}}\)

Đức Phạm
13 tháng 7 2017 lúc 19:42

\(\hept{\begin{cases}2x+y=5\\5x+2y=12\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=10\\5x+2y=12\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}-x=-2\\4x+2y=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Trần Hippo
Xem chi tiết
vũ tiền châu
21 tháng 7 2018 lúc 21:07

1) Ta có pt \(\Leftrightarrow\sqrt{x+1}+2x\sqrt{x+3}=2x+\sqrt{\left(x+1\right)\left(x+3\right)}\)

Đặt \(\sqrt{x+1}=a;\sqrt{x+3}=b\left(b>a\ge0\right)\)

Ta có pt \(\Leftrightarrow a+2xb=2x+ab\Leftrightarrow a\left(1-b\right)-2x\left(1-b\right)=0\Leftrightarrow\left(a-2x\right)\left(1-b\right)=0\)

Đến đây tự thay a,b vào rồi giải pt bậc 2 nhá !

phạm minh tâm
21 tháng 7 2018 lúc 21:31

b, trừ từng vế của 2 pt trong hệ ta có pt hệ quả có nhân tử chung là x-y

lethienduc
Xem chi tiết
Thắng Nguyễn
7 tháng 1 2020 lúc 18:51

Hint: đặt \(\frac{1}{2x-y}=a;\frac{1}{x+y}=b\)

Khách vãng lai đã xóa