Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Huu Quang
Xem chi tiết
vu dinh kien
Xem chi tiết
Lê Bùi Hà Phương
Xem chi tiết
soyeon_Tiểu bàng giải
16 tháng 7 2016 lúc 19:13

1) 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 97 - 98 - 99 + 100 ( có 100 số; 100 chia hết cho 4)

= (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + ... + (97 - 98 - 99 + 100)

= 0 + 0 + ... + 0

= 0

2) Gọi 2 số chẵn liên tiếp là 2k và 2k + 2 (k thuộc Z)

Ta có:

2k.(2k + 2)

= 2k.2.(k + 1)

= 4.k.(k + 1)

Vì k.(k + 1) là tích 2 số tự nhiên liên tiếp nên k.(k + 1) chia hết cho 2

=> 4.k.(k + 1) chia hết cho 8

=> đpcm

Chú ý: nếu bn chưa học tập hợp Z thì có thể sửa thành tập hợp N

Thám Tử THCS Nguyễn Hiếu
16 tháng 7 2016 lúc 19:10

1.1-2-3+4+5-6-7+8+...+97-98-99+100

=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

=0.50

=0

2.VD : 2 số chẵn là 2 ; 4

2 x 4 = 8 chia hết cho 8 nên tích 2 số chẵn liên tiếp chia hết cho 8

Đặng Phương Nhung
Xem chi tiết
Nguyễn Thị Tố Nữ
5 tháng 10 2015 lúc 19:32

                                                    Giải

Bài 1:

a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)

                =12+32x (3+32)+.......+358 x (3+32)=12+3x 12+..........+358 x 12

                =12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)

Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.

=> Tổng này chia hết cho 4.

Bài 2:

Ta có: 12a chia hết cho 12; 36b chia hết cho 12.

=> tổng này chia hết cho 12.

Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)

Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.

=> Tổng này chia hết cho 5.

 

le ha trang
Xem chi tiết
Khách vãng lai
Xem chi tiết
Minh Châu Nguyễn
Xem chi tiết
Buddy
18 tháng 1 2021 lúc 21:32
Chia 52 số nguyên tùy ý cho 100, ta có thể có các số dư từ 0, 1, 2, …, 99. Ta phân các số dư thành các nhóm sau: {0}; {1, 99}; …, {49, 51}, {50}. Ta có tất cả 51 nhóm và khi chia 52 số cho 100 ta có 52 số dư. Theo nguyên lí Dirichlet sẽ có 2 số dư cùng thuộc một nhóm. Ta có hai trường hợp:Trường hợp 1: Hai số dư giống nhau, suy ra hiệu hai số có hai số dư tương ứng đó sẽ chia hết cho 100Trường hợp 2: Hai số dư khác nhau, suy ra tổng của hai số có hai số dư tương ứng đó sẽ chia hết cho 100

Ta suy ra điều phải chứng minh.

Akai Haruma
19 tháng 1 2021 lúc 0:43

Lời giải:

Giả sử 52 số tự nhiên tùy ý là $a_1,a_2,...,a_{52}$. 

TH1: Nếu trong 52 số trên có 2 số cùng số dư khi chia cho $100$ là $a_i, a_j$ thì hiệu $a_i-a_j\vdots 100$ (1)

Nếu trong 52 số trên không có số nào có cùng số dư khi chia cho $100$, nghĩa là $a_1,a_2,..,a_{52}$ tương ứng với 52 số dư khác nhau khi chia $100\$

Xét dãy $(b_i)$ mà $b_i=-a_i$ với $i=1,2,...,52$

Khi đó, $b_1,b_2,....,b_{52}$ cũng tương ứng với $52$ số dư khác nhau khi chia cho $100$ 

$b_i=-a_i\equiv a_i\pmod {100}\Leftrightarrow a_i\equiv 0,50\pmod {100}$

Trong 104 số $a_1,a_2,...,a_{52}, b_1,b_2,...b_{52}$ có ít nhất $100$ số khi chia cho $100$ có số dư khác $0$ và $50$

Bỏ qua $0,50$ thì 1 số khi chia cho $100$ có thể có 98 số dư

Do đó theo định lý Dirichlet thì trong dãy những số không đồng dư với $0,50$ tồn tại ít nhất $[\frac{100}{98}]+1=2$ số $b_i,a_j(i\neq j)$ cùng số dư khi chia cho $100$

$\Leftrightarrow b_i\equiv a_j\pmod {100}$

$\Leftrightarrow a_i+a_j\pmod {100}$ hay $a_i+a_j\vdots 100$ (2)

Từ $(1);(2)$ ta có đpcm.

 

 

 

 

 

Nguyễn Tuấn Hùng
Xem chi tiết
Nguyễn Thị Anh Thư
21 tháng 11 2018 lúc 19:04

NẾU NHƯ LÀ :a-5b thì mình biết làm:

ĐẶT A=5a-b;B=10a+b

\(\Leftrightarrow5B+A=5.\left(10a+b\right)+\left(a-5b\right)\)

\(\Leftrightarrow50a+5b+a-5b\)

\(\Rightarrow51a\)

Vì \(A⋮17;51a⋮17\Leftrightarrow5B⋮17\)

\(\Leftrightarrow B⋮17\Rightarrow10a+b⋮17\)

Nguyễn Tuấn Hùng
23 tháng 11 2018 lúc 19:50

thanks 

Nguyễn thị thu thuận
Xem chi tiết
Quân đẹp trai
12 tháng 5 2020 lúc 21:30

a,ta có : 2n-3 chia hết cho n+1

=> 2n-3 -2(n+1) chia hết cho n+1

=>  -5 chia hết cho n+1

=> n+1 thuộc ước của -4 = 1;-1;5;-5

=> n=0;-2;4;-6 

b, ta có : 3n-5 chia hết cho n-2

=> 3n-5 -3(n-2) chia hết cho n-2

=> 1 chia hết cho n-2

=> n-2 thuộc ước của 1 = 1;-1

=> n = 3;1

Khách vãng lai đã xóa
nguyễn hoàng phương linh
12 tháng 5 2020 lúc 21:39

a) Ta có:

  2n-3 chia hết cho n+1

=>2n+2-5 chia hết cho n+1

=>2(n+1)-5 chia hết cho n+1

Vì 2(n+1) chia hết cho n+1 nên 5 chia hết cho n+1

=> n+1 thuộc Ư(5). Ta có bảng:

n+1 | 1 | -1 | 5 | -5 |

   n  | 0 | -2 | 4 | -6 |

Vậy n thuộc {0;-2;4;-6}

b) Ta có:

   3n-5 chia hết cho n-2

=>3n-6+1 chia hết cho n-2

=>3(n-2)+1 chia hết cho n-2

Vì 3(n-2) chia hết cho n-2 nên 1 chia hết cho n-2

=> n-2 thuộc Ư(1). Ta có bảng:

 n-2 | 1 | -1 |

  n   | 3 |  1  |

Vậy n thuộc {3;1}

Khách vãng lai đã xóa