Chứng minh rằng : \(24^{54}\times54^{24}\times2^{10}\)chia hết cho \(72^{63}\)
Chứng minh rằng : \(24^{54}\times54^{24}\times2^{10}\) chia hết cho \(72^{63}\)
Ta có:
\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{24}.2^{10}\)
\(=2^{196}.3^{126}\) (1)
Lại có:
\(72^{63}=\left(2^3.3^2\right)^{63}=2^{189}.3^{126}\)(2)
Từ (1) và (2) ⇒ \(24^{54}.54^{24}.2^{10}⋮72^{63}\)
Chứng minh rằng:\(24^{54}\times54^{24}\times2^{10}\) chia hết cho\(72^{63}\)
Bấm vào đây /hoi-dap/question/132960.htm
Chứng minh rằng:
\(2^{54}\times54^{24}\times2^{10}\) chia hết cho \(72^{63}\)
Mình cần đáp án lúc 8 giờ tối nay. Nếu sớm hơn nữa thì tốt.
Cám ơn trước.
\(2^{54}.54^{24}.2^{10}\)chia hết \(72^{63} \)
\(2^{54}.54^{24}.2^{10}\)=\((2^3.3)^{54}.(3^3.2)^{24}.2^{10}\)
=\((2^3)^{54}.3^{54}.(3^3)^{24}.2^{24}2^{10}\)
= \(2^{162}.2^{24}.2^{10}.3^{54}.3^{72}
\)
=\(2^{196}.3^{126}\)
\(72^{63}
\)=\((2^3.3^2)^{63}\)
=\((2^3)^{63}.(3^2)^{63}=2^{189}.3^{126}\)
Vì \(2^{196}.3^{126}\)chia hết \(2^{189}.3^{126}\)\(24^{54}.54^{24}.2^{10}\)
\(\Rightarrow \)\(24^{54}.54^{24}.2^{10}\)chia hết \(72^{63}
\)(dpcm)
CMR:
\(24^{54}\times54^{24}\times2^{10}\)chia hết cho\(72^{63}\)
Các bạn vui lòng giải đầy đủ giúp mình! Thanks trước!
Chứng minh rằng: 24^54 . 24^54 . 2^10 chia hết cho 72^63
CMR:
\(81^7-27^9-9^{13}⋮405\)
\(b,24^{54}\times54^{24}\times2^{10}⋮72^{63}\)
a, \(81^7-27^9-9^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{22}\left(3^6-3^5-3^4\right)\)
\(=3^{22}\times405⋮405\)
Chứng minh rằng: 2454.5424.210 chia hết cho 7263
24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24...
=(2^3)^54.3^54.(3^3)^24.2^24.2^10
= 2^162.2^24.2^10.3^54.3^72
=2^196.3^126
72^63=(2^3.3^2)^63
=(2^3)^63(.3^2)^63=2^189.3^126
vì 2^196.3^126 chia hết 2^189.3^126
=>24^54.54^24.2^10 chia hết 72^63
Cảm ơn bạn nhìu lắm.Mình cho luôn **** rồi nhé
Chứng minh rằng;
\(24^{54}.54^{24}.2^{10}\) chia hết cho \(72^{63}\)
\(24^{54}.54^{24}.2^{10}\)
\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{24}.2^{10}\)
\(=2^{196}.3^{126}\)
Lại có :
\(72^{63}=\left(2^3.3^2\right)^{63}\)
\(=\left(2^3\right)^{63}.\left(3^2\right)^{63}\)
\(=2^{189}.3^{126}\)
Vì \(2^{196}.3^{126}⋮2^{189}.3^{126}\Leftrightarrowđpcm\)
Chứng minh rằng;
\(24^{54}.54^{24}.2^{10}\) chia hết cho \(72^{63}\)