cho biểu thức P= (a^4+a)/(a^-a+1) + (2a^2-a)/a - (2a^2-2)/(a+1). Rút gọn
Cho biểu thức A=a^3+2a^2-1/a^3+2a^2+2a+1
Rút gọn phân số A
Cho \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a)Rút gọn biểu thức
b)Chứng minh nếu \(a\in Z\)thì biểu thức đã rút gọn là phân số tối giản.
Cho a > 0 và a ≠ 4 . Rút gọn biểu thức T = a − 2 a + 2 − a + 2 a − 2 . a − 4 a
Với a > 0 và a ≠ 4 , ta có
T
=
a
−
2
a
+
2
−
a
+
2
a
−
2
.
a
−
4
a
=
a
−
2
2
−
a
+
2
2
a
−
2
.
a
+
2
.
a
−
4
a
=
a
−
4
a
+
4
−
a
−
4
a
−
4
a
−
4
.
a
−
4
a
=
−
8
a
a
=
−
8
bài 1: cho biểu thức P=2/2x+3+3/2x+1-6x+5/(2x+1)(2x+3) a) rút gọn P b)tìm giá trị của x để P=-1 bài 2: cho biểu thức P=(a+1/2a-2+1/2-2a^2):2a+2/a+2 a) rút gọn P b)tính giá trị của P khi |a|=2![]()
A=a^3 +2a^2 -1/ a^3 +2a^2 +2a+1
a) Rút gọn biểu thức
b) Cm
hazzz bài này mk biết làm rùi
chỉ so kết quả với các bn thui
Cho biểu thức A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a) Rút gọn biểu thức
b) Chứng minh rằng nếu a là số nguyên thì biểu thức A là 1 phân số tối giản
\(giải:\)\(a,\)
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)\(=\frac{a^3+a^2+a^2-1}{a^3+2a^2+2a+1}\)
\(=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}\)
\(=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2-a+1+2a\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+a-1}{a^2+a+1}\)
\(b,\)gọi d là \(ƯCLN\left(a^2+a-1,a^2+a+1\right)\)
\(\Rightarrow a^2+a-1⋮d\) và \(a^2+a+1⋮d\)
\(\Rightarrow\left(a^2+a-1\right)-\left(a^2+a+1\right)⋮d\)
\(\Rightarrow-2⋮d\)hay\(2⋮d\)
mà \(a^2+a+1=\left(a^2+a\right)+1=a\left(a+1\right)+1\)
mà a(a+1) là tích của hai số nguyên liên tiếp nên chia hết cho 2 => a(a+1) là một số chẵn => a(a+1)+1 là một số lẻ
=> a(a+1)+1 không chia hết cho 2 hay \(a^2+a+1\)ko chia hết cho 2
\(\RightarrowƯCLN\left(a^2+a-1,a^2+a+1\right)=1\)
\(\Rightarrow\frac{a^2+a-1}{a^2+a+1}\)là một phân số tối giản hay A là phân số tối giải(đpcm)
a ) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b ) Gọi d là ƯC(a2 + a - 1; a2 + 1 + 1) Nên ta có :
a2 + a - 1 ⋮ d và a2 + a + 1 ⋮ d
=> (a2 + a + 1) - (a2 + a - 1) ⋮ d
=> 2 ⋮ d => d = { 1; 2 }
Xét a2 + a + 1 = a(a + 1) + 1 . Vì a(a + 1) là 2 số nguyên liên tiếp nên a(a + 1) ⋮ 2
=> a(a + 1) + 1 không chia hết cho 2
=> ƯC(a2 + a - 1; a2 + 1 + 1) = 1
=> \(\frac{a^2+a-1}{a^2+a+1}\) là phân số tối giản
Hay \(A\)là phân số tối giản (đpcm)
Rút gọn biểu thức: (a^3 + 2a^2 - 1)/(a^3 + 2a^2 + 2a +1)
Câu 1 : Cho biểu thức :
A= a^3+2a^2-1/ a^3+2a^2+2a+1
a/ Rút gọn biểu thức
B/ CMR nếu a là số nguyên âm thì giá trị biểu thức tìm đc của câu a là 1 phân số tối giản
Cái đề này không rõ nhé bạn! Bạn ghi lại đề bằng fx nhé![]()
Có đầy câu hỏi tương tự đáy bạn lên các câu hỏi đó mà xem
Cho biểu thức A=\(\dfrac{2a^2+4}{1-a^2}-\dfrac{1}{1+\sqrt{a}}-\dfrac{1}{1-\sqrt{a}}\)( với a≥0;a≠1)
Rút gọn biểu thức A
NHờ mọi người giúp ạ
Lời giải:
\(A=\frac{2a^2+4}{(1-a)(1+a)}-\frac{1-\sqrt{a}+1+\sqrt{a}}{(1+\sqrt{a})(1-\sqrt{a})}=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2}{1-a}\)
\(=\frac{2a^2+4}{(1-a)(1+a)}-\frac{2(1+a)}{(1-a)(1+a)}=\frac{2a^2-2a+2}{(1-a)(1+a)}=\frac{2(a^2-a+1)}{1-a^2}\)