Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
29 tháng 8 2023 lúc 13:49

Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)

\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)

\(VP=\left(y^2+3y+1\right)^2-1\)

\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))

pt đã cho trở thành:

\(x^2=t^2-1\)

\(\Leftrightarrow t^2-x^2=1\)

\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)

Ta xét các TH:

\(t-x\) 1 -1
\(t+x\) 1 -1
\(t\) 1 -1
\(x\) 0

0

Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)

Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).

 Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)

 

kieu nhat minh
Xem chi tiết
alibaba nguyễn
8 tháng 11 2016 lúc 21:29

Ta có

\(1\left(x+1\right)\left(x+2\right)\left(x+8\right)\left(x+9\right)=y^2\)

\(\Leftrightarrow1\left(x^2+10x+9\right)\left(x^2+10x+16\right)=y^2\)

Đặt x2 + 10x + 16 = a thì pt thành

a(a + 7) = y2

<=> 4a2 + 28a = 4y2

<=> (4a2 + 28a + 49) - 4y2 = 49

<=> (2a + 7)2 - 4y2 = 49

<=> (2a + 7 - 2y)(2a + 7 + 2y) = 49

<=> (2a + 7 - 2y, 2a + 7 + 2y) = (1, 49; 49, 1; 7, 7; - 1,- 49; - 49, - 1; - 7, - 7)

Thế vào rồi giải sẽ tìm được x,y

kieu nhat minh
9 tháng 11 2016 lúc 11:26

thanks

alibaba nguyễn
9 tháng 11 2016 lúc 13:31

Đặt x2 + 4x + 9 = a mới đúng nhé. Nãy quên đổi lại

pham trung thanh
Xem chi tiết
Quỳnh Giang Bùi
7 tháng 10 2017 lúc 8:37

nhân cái đầu với cái cuối

Hà Phạm Như Ý
Xem chi tiết
Nguyễn Kiên
10 tháng 6 2017 lúc 15:02

(x+y)2 = (x+y)(x-y)

<=>x2 + 2xy + y2 = x2 - y2

<=>2y2 + 2xy = 0

<=>2y(x+y) = 0

<=> y = 0 hoặc x + y = 0

<=>y = 0 hoặc y = -x

Hà Phạm Như Ý
Xem chi tiết
Nguyễn Kiên
11 tháng 6 2017 lúc 17:38

x + y = 0 hoặc y = 0

 TNT TNT Học Giỏi
11 tháng 6 2017 lúc 17:45

kết quả là 

  y=0

    đs...

Vũ Tri Hải
13 tháng 6 2017 lúc 18:00

đặt a = x - 1; b = y + 1.

khi đó ta có (a + b)2 = ab hay a2 + ab + b2 = 0.

khi đó suy ra a = b = 0 hay x = 1 và y = -1.
 

Nguyễn Mai
Xem chi tiết
Nguyễn Thị NGọc Ánh
Xem chi tiết
Nguyễn Văn Tuấn Anh
Xem chi tiết

Dễ thấy vế trái chia hết cho 5 với y >0
Vậy y=0 , giải ra x 

Học tốt!!!!!!!

 Ta có :  2x;2x+1;2x+2;2x+3;2x+4 là 5 số tự nhiên liên tiếp.

                        =>  2x(2x+1)(2x+2)(2x+3)(2x+4)⋮5

                Mặt khác ƯCLN ( 2x; 5)=1 nên  (2x+1)(2x+2)(2x+3)(2x+4)⋮5 

                + Với  y≥1 thì VP= [(2x+1)(2x+2)(2x+3)(2x+4)−5y]⋮5 

                Mà VP= 11879≡4(mod5) 

                Suy ra phương trình vô nghiệm

                +Với y=0 ta có :

                        (2x+1)(2x+2)(2x+3)(2x+4)−50=11879 

                 <=> (2x+1)(2x+2)(2x+3)(2x+4)=11880 

                 <=> (2x+1)(2x+2)(2x+3)(2x+4)=9.10.11.12

                 <=> 2x+1=9 

                 <=> 2x=8 

                 <=> 2x=23 

                 <=>x=3

                 Vậy phương trình đã cho có 1 nghiệm duy nhất (x; y)=(3; 0)

Thanh Dii
Xem chi tiết
Thanh Dii
Xem chi tiết