câu 1 cho tam giác ABC, D là một điểm trên cạnh BC. vẽ DE // AB, DF // AC (E \(\in\)AC; F \(\in\)AB) xác định vị trí của điểm D để tứ giác AEDF là hình thoi
câu 2 tính chu vi hình thoi, biết các đường chéo bằng 16cm và 30cm
Câu 1: Cho tam giác ABC, điểm D thuộc cạnh BC. Vẽ DE // AC; DF // AB (E nằm trên AB; F nằm trên AC). Gọi O là trụng điểm của EF. Tìm quỹ tích của O khi D di động trên cạnh BC.
Xét tứ giác AEDF có
AE//DF
DE//AF
Do đó: AEDF là hình bình hành
Suy ra: Hai đường chéo AD và EF cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của FE
nên O là trung điểm của AD
=>Khi D di chuyển trên BC thì O là trung điểm của AD
Cho tam giác ABC đều,lấy điểm D trên cạnh BC sao cho BC=3BD,vẽ DE vuông góc với BC(E thuộc AB),vẽ DF vuông góc với AC(F thuộc AC).Chứng minh rằng tam giác DEF là tam giác đều
Cho tam giác ABC cân tại A, AB=4.Từ một điểm D trên cạnh BC, vẽ DE//AB (E thuộc AC) và DF//AC(F thuộc AB). Tính chu vi của tứ giác AEDF
Cho tam giác nhọn ABC có AB = AC. Vẽ BH vuông góc với AC tại H. D là điểm tùy ý trên cạnh BC. Vẽ DE vuông góc với AB tại E, DF vuông góc với AC tại F. Chứng minh DE + DF = BH
Cho tam giác ABC cân tại A,AB=4.Từ 1 điểm D trên cạnh BC vẽ DE//AB (E thuộc AC) và DF//AC (F thuộc AB) tính chu vi tứ giác AEDF
Lời giải:
$DF\parallel AE, DE\parallel AF$ nên $AEDF$ là hình bình hành
$P_{AEDF}=AE+DF+DE+AF$
Lại có:
$DF\parallel AC$ nên áp dụng định lý Talet:
$\frac{DF}{AC}=\frac{BF}{AB}$. Mà $AB=AC$ nên $DF=BF$
$DE\parallel AB$ nên áp dụng định lý Talet:
$\frac{CE}{AC}=\frac{DE}{AB}$ mà $AB=AC$ nên $CE=DE$
Do đó:
$P_{AEDF}=AE+BF+CE+AF=(AE+CE)+(BF+AF)=AC+AB=4+4=8$ (cm)
Cho tam gác ABC đều. Lấy điểm D trên cạnh BC sao cho BC = 3. BD. Vẽ DE vuông góc BC ( E thuộc AB), vẽ DF vuông góc AC (F thuộc AC). Chứng minh rằng: tam giác DEF là tam giác đều
Đề sai rồi nhé \(E\varepsilon AB\)! mới đúng
Cho tam giác ABC cân tại A, vẽ BH vuông góc AC tại H. Gọi D là điểm tùy ý trên cạnh BC. Vẽ DE vuông góc với AB tại E. Vẽ DF vuông góc với AC tại F. Chứng minh: DE + DF = BC
cho tam giác ABC cân tại A(A<90 độ), vẽ BH vuông góc AC tại H. gọi D là điểm tùy ý trên cạnh BC. vẽ DE vuông góc AB tại E, DF vuông góc AC tại F. CMR: DE+DF=BH
cho tam giác ABC cân tại A, D là một điểm bất kì trên BC. Vẽ DE vuông góc với AB, DF vuông góc với AC. CMR DE+DF không đối khi D di chuyển trên cạnh BC