Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần thị hoàng yến
Xem chi tiết
nguyenvankhoi196a
5 tháng 11 2017 lúc 17:11

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

Đường Quỳnh Giang
30 tháng 9 2018 lúc 5:18

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

Hoàng Phương Minh
Xem chi tiết
Trịnh Hải Đức
14 tháng 7 2020 lúc 8:18

 rl8ph6gr59i5fe5ed7i90u68xw8pce5u

; ouunogrr

Khách vãng lai đã xóa
Lê Thanh Mai
Xem chi tiết
SAD
2 tháng 9 2018 lúc 1:27

\(x^2+3x+2\)

\(=x^2+x+2x+2\)

\(=x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x+2\right)\)

Hoàng Yến
Xem chi tiết
NHK Linh
23 tháng 10 2016 lúc 15:12

bn ko bik lm hay sao, hay là bn chỉ đăng đề lên thôi

Nhók Bướq Bỉnh
2 tháng 11 2016 lúc 19:49

sao nhìu... z p , đăq từq câu 1 thôy nha p

trần thị hoàng yến
Xem chi tiết
Annie Phạm
20 tháng 10 2016 lúc 12:36

Ôi trời sao lắm thế ít thôi bạn nên tách ra mà bạn cần gấp lắm à

trần thị hoàng yến
20 tháng 10 2016 lúc 12:40

đúng rồi pn. giúp mik đc bài nào cũng đc

Mẫn Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 1 2022 lúc 9:44

Bạn ghi lại đề đi bạn

Hoàng Phương Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 9 2022 lúc 14:43

Bài 1:

a: \(A=\left|3x+6\right|+\left(2x-4y\right)^2+6>=6\)
Dấu '=' xảy ra khi x=-2 và 2x=4y

=>x=-2 và 4y=-4

=>x=-2 và y=-1

b: \(B=\left|2x-5\right|+\left|7-2x\right|>=\left|2x-5+7-2x\right|=2\)

Dấu '=' xảy ra khi (2x-5)(2x-7)<=0

=>5/2<=x<=7/2

Lê Phan Thảo Đan
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:14

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:20

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)

 

Nguyễn Trường An
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2021 lúc 21:58

a: \(5x^2\left(3x^3-2x^2+x+2\right)\)

\(=15x^5-10x^4+5x^3+10x^2\)

b: \(3x^4\left(-2x^3+5x^2-\dfrac{2}{3}x+\dfrac{1}{3}\right)\)

\(=-6x^7+15x^6-2x^5+x^4\)