\(6x^2y^3+3x^2-10y^3=-2\)
tìm nghiệm nguyên
tìm nghiệm nguyên của pt \(6x^2y^3+3x^2-10y^3=-2\)
Lời giải:
Ta có:
$6x^2y^3+3x^2-10y^3=-2$
$\Leftrightarrow 2y^3(3x^2-5)+(3x^2-5)=-7$
$\Leftrightarrow (2y^3+1)(3x^2-5)=-7$
Vì $x,y$ nguyên nên $2y^3+1; 3x^2-5$ cũng đều nhận giá trị nguyên.
Đến đây ta xét các TH:
TH1: $2y^3+1=-1; 3x^2-5=7$
TH2: $2y^3+1=1; 3x^2-5=-7$
TH3: $2y^3+1=-7; 3x^2-5=1$
TH4: $2y^3+1=7; 3x^2-5=-1$
Giải lần lượt các TH ta được $x=\pm 2; y=-1$
Tìm nghiệm nguyên của phương trình:
\(6x^2y^3+3x^2-10y^3=-2\)
\(6x^2y^4+3x^2-10y^3=-2\)
\(\Leftrightarrow3x^2\left(2y^3+1\right)-10y^3-5+5=-2\)
\(\Leftrightarrow3x^2\left(2y^3+1\right)-5\left(2y^3+1\right)=-7\)
\(\Leftrightarrow\left(3x^2-5\right)\left(2y^3+1\right)=-7\)
\(\Rightarrow\left(3x^2-5\right);\left(2y^3+1\right)\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm\dfrac{2}{\sqrt[]{3}};\sqrt[3]{3}\right);\left(\pm\sqrt[]{2};\sqrt[3]{4}\right);\left(\varnothing;0\right);\left(\pm2;-1\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm2;-1\right)\right\}\left(x;y\in Z\right)\)
6x2y3 +3x2 - 10y3 = -2
\(_{_{ }^{ }\Leftrightarrow}\) 2y3(3x2 \(-\) 2) + 3x2 \(-\) 2= -4
\(_{_{ }^{ }\Leftrightarrow}\)\(\left(3x^2-2\right)\left(2y^3+1\right)=-4=-1.4=-2.2\)
Vì x2 \(\ge\)0 nên 3x2 -2 \(\ge\)-2
Ta có các trường hợp:
TH1: \(\left\{{}\begin{matrix}3x^2-2=-1\\2y^3+1=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{1}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{3}{2}}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}3x^2-2=2\\2y^3+1=-2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{2}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{-3}{2}}\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}3x^2-2=-2\\2y^3+1=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=0\\y=\sqrt[3]{\dfrac{1}{2}}\end{matrix}\right.\)
Vậy .....
Tìm nghiệm nguyên của phương trình :
\(6x^2y^3+3x^2-10y^3=-2\)
Câu hỏi của cherry moon - Toán lớp 9 - Học toán với OnlineMath
Giải phương trình nghiệm nguyên :
\(6x^2y^3+3x^2-10y^3=-2\)
Có: \(6x^2y^3+3x^2-10y^3=-2\)
<=> \(3x^2\left(2y^3+1\right)-5\left(2y^3+1\right)+5=-2\)
<=> \(\left(2y^3+1\right)\left(3x^2-5\right)=-7\)
Th1: \(\hept{\begin{cases}2y^3+1=-7\\3x^2-5=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=-4\\x^2=2\end{cases}\left(loai\right)}\)
Th2: \(\hept{\begin{cases}2y^3+1=-1\\3x^2-5=7\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=-1\\x^2=4\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=\pm2\end{cases}}\)
Th3: \(\hept{\begin{cases}2y^3+1=1\\3x^2-5=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=0\\x^2=-\frac{2}{3}\end{cases}\left(loai\right)}\)
Th4: \(\hept{\begin{cases}2y^3+1=7\\3x^2-5=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=3\\x^2=\frac{4}{3}\end{cases}\left(loai\right)}\)
Vậy phương trình có nghiệm: ( -2;-1) và ( 2; -1)
\(\frac{3x-2}{3}=\frac{2y+1}{4}=\frac{z-6}{5}=\frac{6x+10y+2y-11}{11x+3}\)
ta có 2TH
TH1 6x+10y+2z - 11 = 0
\(\Rightarrow\hept{\begin{cases}3x-2=0\\2y+1=0\\z-6=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=-\frac{1}{2}\\z=6\end{cases}}}\)
TH2 6x+10y+2z - 11 \(\ne\)0
áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{3x-2}{3}=\frac{2y+1}{4}=\frac{z-6}{5}=\frac{6x+10y+2z-11}{6+20+10}\)\(=\frac{6x+10y+2z-11}{36}\)
=> 36 = 11x + 3
=> x = 3
\(\Rightarrow\hept{\begin{cases}\frac{3x-2}{3}=\frac{7}{3}\\\frac{2y+1}{4}=\frac{7}{3}\\\frac{z-6}{5}=\frac{7}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=\frac{25}{6}\\z=\frac{53}{3}\end{cases}}\)
Tìm x,y, z biết:
2) 3x= 2y=z và x+y+z= 99
3) 6x= 10y= 14z và x+y+z= 46
1)
\(3x=2y=z\)
\(\Rightarrow\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)
\(\Rightarrow\begin{cases}x=18\\y=26\\z=54\end{cases}\)
2)
\(6x=10y=14z\)
\(\Rightarrow\frac{6x}{210}=\frac{10y}{210}=\frac{14z}{210}\)
\(\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=\frac{x+y+z}{35+21+15}=\frac{46}{71}\)
\(\Rightarrow\begin{cases}x=\frac{1610}{71}\\y=\frac{966}{71}\\z=\frac{690}{71}\end{cases}\)
2) Tính chất tỉ lệ thức :
\(3x=2y=z\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{z}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{99}{6}=16,5\)
\(\frac{x}{3}=16,5\Rightarrow x=49,5\)
\(\frac{y}{2}=16,5\Rightarrow y=33\)
\(\frac{z}{1}=16,5\Rightarrow z=16,5\)
3) Áp dụng tính chất tỉ lệ thức :
\(6x=10y=14z\Rightarrow\frac{x}{6}=\frac{y}{10}=\frac{z}{14}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{6}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{6+10+14}=\frac{46}{130}=\frac{23}{65}\)
\(\frac{x}{6}=\frac{23}{65}\Rightarrow x=\frac{6}{5}\)
\(\frac{y}{10}=\frac{23}{65}\Rightarrow y=\frac{46}{13}\)
\(\frac{z}{14}=\frac{23}{65}\Rightarrow z=\frac{322}{65}\)
Tìm nghiệm nguyên của phương trình:
6x 3 –xy(11x+3y) +2y 3 =6
(x-2y)(2x+y)(3x- y) =6
bn ơi bn lm đc bài này ko giúp mik vs
tìm x;y trong phương trình nghiệm nguyên sau:
a)x^2+y^2-2.(3x-5y)=11 b)x^2+4y^2=21+6x
tìm nghiệm nguyên của phương trình
a) \(x^2+6x+y^2+10y=24\)
b) \(x^2-2y=5\)
c) \(x^2-2y^2=1\)
tìm đa thức g(x) rồi tìm nghiệm của g(x) 8x^2y - x^3 + 3x^2 + g(x) = 8x^2y - x^3 - 6x