Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ly Ly
Xem chi tiết
Hiện thực khốc liệt :D
30 tháng 6 2021 lúc 16:19

`A=\sqrt{1+2008^2+2008^2/2009^2}+2008/2009`

`=\sqrt{1+2008^2+2.2008+2008^2/2009^2-2.2008}+2008/2009`

`=\sqrt{(2008+1)^2-2.2008+2008^2/2009^2}+2008/2009`

`=\sqrt{2009-2.2008/2009*2009+2008^2/2009^2}+2008/2009`

`=\sqrt{(2009-2008/2009)^2}+2008/2009`

`=|2009-2008/2009|+2008/2009`

`=2009-2008/2009+2008/2009`

`=2009` là 1 số tự nhiên

Ly Ly
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 9 2021 lúc 21:29

Đặt \(2008=a\)

\(\Leftrightarrow A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-\dfrac{2a\left(a+1\right)}{a+1}+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2009\left(đpcm\right)\)

roronoa zoro
Xem chi tiết
Vũ Tiến Manh
26 tháng 10 2019 lúc 21:38

đặt \(2008=a\)

\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=\sqrt{\left(a+1\right)^2-\frac{2\left(a+1\right).a}{a+1}+\left(\frac{a}{a+1}\right)^2}=\)\(\sqrt{\left(a+1-\frac{a}{a+1}\right)^2}=a+1-\frac{a}{a+1}\)=2008+1- \(\frac{2008}{2009}\)

=> A= 2008+1 = 2009

Khách vãng lai đã xóa
Ly Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 21:19

Bài 1: 

Ta có: \(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)

Xem chi tiết
van anh Duong
Xem chi tiết
Như Ý Nguyễn Lê
30 tháng 10 2017 lúc 14:48

Ta có :\(2009^2=\left(1+2008\right)^2=1+2008^2+2.2008\)

\(\Rightarrow1+2008^2=2009^2-2.2008\)

\(\Rightarrow A=\sqrt{2009^2-2.2008+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}=\sqrt{\left(2009-\dfrac{2008}{2009}\right)^2}+\dfrac{2008}{2009}\)

\(=2009-\dfrac{2008}{2009}+\dfrac{2008}{2009}=2009\)
Vậy A là 1 số tự nhiên.

Võ Hồng Phúc
26 tháng 10 2019 lúc 14:41

Căn bậc hai. Căn bậc ba

Khách vãng lai đã xóa
Chú tiểu thích học toán
2 tháng 6 2021 lúc 20:20

Không có mô tả.

Nguyễn Võ Anh Nguyên
Xem chi tiết
TR ᗩ NG ²ᵏ⁶
Xem chi tiết
Dang Tuan Khanh
Xem chi tiết