Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Lâm Thanh Trúc
Xem chi tiết
Akai Haruma
5 tháng 2 lúc 18:04

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

Akai Haruma
5 tháng 2 lúc 18:05

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

Akai Haruma
5 tháng 2 lúc 18:06

Bài 2:

a. $7\vdots n+1$

$\Rightarrow n+1\in \left\{1; -1; 7; -7\right\}$

$\Rightarrow n\in \left\{0; -2; 6; -8\right\}$

b.

$2n+5\vdots n+1$
$\Rightarrow 2(n+1)+3\vdots n+1$

$\Rightarrow 3\vdots n+1$

$\Rightarrow n+1\in \left\{1; -1; 3; -3\right\}$

$\Rightarrow n\in \left\{0; -2; 2; -4\right\}$

huỳnh anh phương
Xem chi tiết
ChuTiếnQuảng
22 tháng 5 2018 lúc 18:45

A=11+22+33+44

=33+77

=110

B=14+23+32+41

=37+73

=110

VÌ 110=110 NÊN A =B

Nguyễn Phạm Hồng Anh
22 tháng 5 2018 lúc 17:59

A = 11 + 22 + 33 + 44

   = 33 + 33 + 44

   = 66 + 44

   = 110

B = 14 + 23 + 32 + 41

   = 37 + 73

   = 110

Vậy A = B ( = 110 )

Phú Quý Lê Tăng
22 tháng 5 2018 lúc 17:59

\(A=11+22+33+44=10+1+20+2+30+3+40+4\)

\(A=10+4+20+3+30+2+40+1=14+23+32+41=B\)

Phan Lâm Thanh Trúc
Xem chi tiết
Kiều Vũ Linh
9 tháng 1 lúc 13:58

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)

Kiều Vũ Linh
9 tháng 1 lúc 14:05

Bài 2

H = 3 + 3² + 3³ + ... + 3²⁰²²

⇒ 3H = 3² + 3³ + 3⁴ + ... + 3²⁰²³

⇒2H = 3H - H

= (3² + 3³ + 3⁴ + ... + 3²⁰²³) - (3 + 3² + 3³ + ... + 3²⁰²²)

= 3²⁰²³ - 3

⇒ H = (3²⁰²³ - 3) : 2

Min Suga
Xem chi tiết
Y-S Love SSBĐ
2 tháng 10 2018 lúc 12:08

 B = 1 + 2 + 22 + 23 +....+ 232

2B = 2 + 22 + 23 + 24 +....+ 233

2B - B = 233 - 1

\(\Rightarrow\)B < A Vì 233 - 1 < 233

Hk tốt

Tẫn
2 tháng 10 2018 lúc 12:23

\(B=1+2+2^2+2^3+....+2^{32}\)

\(\Rightarrow2B=2+2^2+2^3+2^4+....+2^{33}\)

\(2B-B=\left(2+2^2+2^3+2^4+....+2^{33}\right)-\left(1+2+2^2+2^3+....+2^{32}\right)\)

\(B=2^{33}-1< 2^{33}\)

Vậy \(B< A\)

Nguyễn Gia Huy
Xem chi tiết
Hatsune  Miku
Xem chi tiết
Die Devil
14 tháng 8 2016 lúc 19:23

\(\text{Có 3 trường hợp có thể xảy ra:}\)

\(A=B\)

\(A< B\)
\(A>B\)

Hatsune  Miku
14 tháng 8 2016 lúc 19:26

mik cần giải mà 

Die Devil
14 tháng 8 2016 lúc 19:42

\(A=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(Mà:\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}.10=\frac{1}{4}\left(\text{10 số hạng}\right)\)

\(\text{Tương tự}:\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{5}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{6}\)

\(\Rightarrow A>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)

\(\Rightarrow A>\frac{37}{60}\)

\(Mà\)\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{3}{5}\)

\(\Rightarrow A>\frac{3}{5}\)

\(A=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{31}.10=\frac{10}{30}=\frac{1}{3}\left(\text{10 số hạng}\right)\)

\(\Rightarrow A< \frac{4}{5}\)

\(\Rightarrow\frac{3}{5}< A< \frac{4}{5}\)

\(\text{Mik chỉ pít làm z!!!☺}\)

TranKhanhHuyenht
Xem chi tiết
Giang Hải Anh
Xem chi tiết
tỷ tỷ
Xem chi tiết
Pham Van Hung
2 tháng 8 2018 lúc 19:33

\(30A=\frac{30^{32}+30}{30^{32}+1}=\frac{30^{32}+1+29}{30^{32}+1}=1+\frac{29}{30^{32}+1}\)

\(30B=\frac{30^{33}+30}{30^{33}+1}=\frac{30^{33}+1+29}{30^{33}+1}=1+\frac{29}{30^{33}+1}\)

Vì \(\frac{29}{30^{32}+1}>\frac{29}{30^{33}+1}\) nên \(1+\frac{29}{30^{32}+1}>1+\frac{29}{30^{33}+1}\Rightarrow30A>30B\Rightarrow A>B\)

Vậy \(A>B.\)

Chúc bạn học tốt.

Lâm Khánh Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 9 2021 lúc 21:15

a: \(A=2019\cdot2021=2020^2-1\)

\(B=2020^2\)

Do đó: A<B

Hà Nhật Oanh
10 tháng 10 2021 lúc 20:32
Fhzhizuu8zìtcùbìgìvìg⁸fu7fdjhtvfghhhujfghfhgkffztdhcvvgoh. Gtvguvvhhvhvzcgctv
Khách vãng lai đã xóa