phân tích thành nhân tửa(b-c)^2+ b(c-a)^2+c(a-b)^2-a^3-b^3-c^3+4abc
`a(b-c)^2 +b(c-a)^2 +c(a-b)^2 -a^3 -b^3 -c^3 +4abc`
Phân tích thành nhân tử
(a(b-c)^2 + b(c-a)^2 + c(a-b)^2) - (a^3 + b^3 + c^3) + 4abc
= a(b^2 - 2bc + c^2) + b(c^2 - 2ac + a^2) + c(a^2 - 2ab + b^2) - (a^3 + b^3 + c^3) + 4abc
= ab^2 - 2abc + ac^2 + bc^2 - 2abc + ba^2 + ca^2 - 2abc + cb^2 - a^3 - b^3 - c^3 + 4abc
= ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 - a^3 - b^3 - c^3 + 4abc - 6abc
= a(b^2 + c^2 + a^2) + b(a^2 + c^2 + b^2) + c(a^2 + b^2 + c^2) - (a^3 + b^3 + c^3) - 2abc
= a^3 + b^3 + c^3 + a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2 - a^3 - b^3 - c^3 - 2abc
= a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2 - 2abc
= ab(a + b) + ac(a + c) + bc(b + c) - 2abc
= (a + b)(ab - ac + bc) - 2abc
Vậy, ta có thể viết bài toán dưới dạng nhân tử là: (a + b)(ab - ac + bc) - 2abc.
Phân tích đa thức thành nhân tử
a(b - c)^2 + b(c -a)^2 + c(a - b)^2 - a^3 - b^3 – c^3 + 4abc
phân tích thành nhân tử a(b-c)^2+ b(c-a)^2+c(a-b)^2-a^3-b^3-c^3+4abc
phân tích đa thức này thành nhân tử a(b-c)^2+ b(c-a)^2+c(a-b)^2-a^3-b^3-c^3+4abc
phân tích đa thức thành nhân tử
a(b-c)^2+b(c-a)^2+c(a-b)^2-a^3-b^3-c^3+4abc
Để phân tích đa thức sau thành nhân tử:
\(a \left(\right. b - c \left.\right)^{2} + b \left(\right. c - a \left.\right)^{2} + c \left(\right. a - b \left.\right)^{2} - a^{3} - b^{3} - c^{3} + 4 a b c\)
Bước 1: Tính các bình phương và sắp xếpChúng ta bắt đầu bằng cách mở rộng các bình phương trong đa thức:
\(\left(\right. b - c \left.\right)^{2} = b^{2} - 2 b c + c^{2}\)\(\left(\right. c - a \left.\right)^{2} = c^{2} - 2 a c + a^{2}\)\(\left(\right. a - b \left.\right)^{2} = a^{2} - 2 a b + b^{2}\)
Thay các biểu thức này vào đa thức ban đầu:
\(a \left(\right. b - c \left.\right)^{2} + b \left(\right. c - a \left.\right)^{2} + c \left(\right. a - b \left.\right)^{2} = a \left(\right. b^{2} - 2 b c + c^{2} \left.\right) + b \left(\right. c^{2} - 2 a c + a^{2} \left.\right) + c \left(\right. a^{2} - 2 a b + b^{2} \left.\right)\)
Mở rộng từng phần:
\(= a b^{2} - 2 a b c + a c^{2} + b c^{2} - 2 a b c + b a^{2} + c a^{2} - 2 a b c + c b^{2}\)
Kết hợp các hạng tử lại:
\(= a b^{2} + a c^{2} + b c^{2} + b a^{2} + c a^{2} + c b^{2} - 6 a b c\)
Bây giờ, cộng thêm các hạng tử còn lại trong đa thức gốc:
\(= a b^{2} + a c^{2} + b c^{2} + b a^{2} + c a^{2} + c b^{2} - 6 a b c - a^{3} - b^{3} - c^{3} + 4 a b c\)
Bước 2: Kết hợp các hạng tửTa tiếp tục gộp các hạng tử giống nhau:
\(= a b^{2} + a c^{2} + b c^{2} + b a^{2} + c a^{2} + c b^{2} - 2 a b c - a^{3} - b^{3} - c^{3}\)
Bước 3: Phân tích đa thứcTiếp theo, chúng ta thấy rằng các hạng tử này có thể nhóm lại và có thể thấy rằng đây là một dạng biểu thức có thể được rút gọn hoặc có thể phân tích thêm theo các cách đặc biệt, như sử dụng các công thức đặc biệt trong đại số.
Tuy nhiên, việc phân tích đa thức này hoàn toàn thành nhân tử đơn giản rất khó khăn mà không sử dụng các công thức hoặc phương pháp phức tạp hơn (ví dụ, phân tích theo nhóm hoặc sử dụng máy tính đại số).
Do đó, kết quả cuối cùng của đa thức này là dạng rút gọn.
Phân tích đa thức thành nhân tử :
a(b-c)2+b(c-a)2+c(a-b)2-a3-b3-c3+4abc
\(A=a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]+4abc\)
\(=a\left(b-c+a\right)\left(b-c-a\right)+b\left(c-a+b\right)\left(c-a-b\right)+c\left(a-b+c\right)\left(a-b-c\right)+4abc\)
\(=\left(a+b-c\right)\left(ab-ac-a^2-bc+ab-b^2\right)+c\left(a^2-2ab+b^2-c^2+4ab\right)\)
\(=\left(a+b-c\right)\left[-c\left(a+b\right)-\left(a-b\right)^2\right]+c\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(a+b-c\right)\left(-ca-cb-a^2+2ab-b^2+ac+cb+c^2\right)\)
\(=\left(a+b-c\right)\left(c^2-\left(a-b\right)^2\right)\)
\(=\left(a+b-c\right)\left(c+a-b\right)\left(a+b-c\right)\)
phân tik đa thức thành nhân tử
a(b-c)^2+b(a-c)^2+c(a-b)^2- a^3 -b^3 -c^3 +4abc
phân tích đa thức thnanh nhân tử
a(b-c)^2+b(c-a)^2+c(a-b)^2-a^3-b^3-c^3+4abc
Phân tích đa thức thành nhân tử:
A = a(b-c)2 + b(c-a)2 + c(a-b)2 - a3 - b3 - c3 + 4abc
a(b-c)^2+b(a-c)^2+c(a-b)^2- a^3 -b^3 -c^3 +4abc
=a[(b-c)^2-a^2)]+ b[(a-c)^2-b^2)]+c[(a-b)^2-c^2)]+4abc
=a[(b-c)^2-a^2)]+ b[(a+c)^2-b^2)]+c[(a-b)^2-c^2)]
=a(b-c-a)(b-c+a)+b(a+c-b)(a+b+c)+c(a+c...
=[-a(b-c+a)+b(a+b+c)+c(a-b-c)](a+c-b)
em cu tiếp tục phân tích cái vế trong ngoặc vuông đuọc (a+b-c)(b+c-a) la d'c em nha
dap so la :(a+c-b)(a+b-c)(b+c-a)
tick nha !!!