Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lizy

`a(b-c)^2 +b(c-a)^2 +c(a-b)^2 -a^3 -b^3 -c^3 +4abc`
Phân tích thành nhân tử

meme
12 tháng 9 2023 lúc 14:11

(a(b-c)^2 + b(c-a)^2 + c(a-b)^2) - (a^3 + b^3 + c^3) + 4abc

= a(b^2 - 2bc + c^2) + b(c^2 - 2ac + a^2) + c(a^2 - 2ab + b^2) - (a^3 + b^3 + c^3) + 4abc

= ab^2 - 2abc + ac^2 + bc^2 - 2abc + ba^2 + ca^2 - 2abc + cb^2 - a^3 - b^3 - c^3 + 4abc

= ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 - a^3 - b^3 - c^3 + 4abc - 6abc

= a(b^2 + c^2 + a^2) + b(a^2 + c^2 + b^2) + c(a^2 + b^2 + c^2) - (a^3 + b^3 + c^3) - 2abc

= a^3 + b^3 + c^3 + a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2 - a^3 - b^3 - c^3 - 2abc

= a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2 - 2abc

= ab(a + b) + ac(a + c) + bc(b + c) - 2abc

= (a + b)(ab - ac + bc) - 2abc

Vậy, ta có thể viết bài toán dưới dạng nhân tử là: (a + b)(ab - ac + bc) - 2abc.


Các câu hỏi tương tự
Nguyễn Văn Nam
Xem chi tiết
Thanh Tâm
Xem chi tiết
APTX 4869
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
Rio Va
Xem chi tiết
lam
Xem chi tiết
Pham Trong Bach
Xem chi tiết
đanh khoa
Xem chi tiết
Trần Thùy Linh
Xem chi tiết